Home
Class 12
MATHS
In the integral int(cos 8x+1)/(cot 2x...

In the integral
`int(cos 8x+1)/(cot 2x-tan 2x)dx=A cos 8x+k`, where k is an arbitrary constant,then A is equal to

A

`-1/16`

B

`1/16`

C

`1/8`

D

`-1/8`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int(1+cos4x)/(cot x-tan x)dx

int(1+cos4x)/(cot x-tan x)dx

int(cos8x-1)/(tan2x-cot2x)dx

" If "int(cos4x+1)/(cot x-tan x)dx=A cos4x+B" ,then "|8A|" is "

What is int (x cos x + sin x) dx equal to ? Where c is an arbitrary constant

If : int(1+cos8x)/(tan2x-cot2x)dx=a.cos8x+c, then : a=

If (1+cos8x)/(tan2x-cot2x)dx=acos8x+C ,then a=

The value of the integral int((sin x)/(x))^(6)((x cos x - sin x)/(x^2)) dx is (where , c is an arbitrary constant)