Home
Class 12
MATHS
If |x| lt 1" thn "underset(n to oo)"Lt "...

If `|x| lt 1" thn "underset(n to oo)"Lt "(1+x)(1+x^(2))(1+x^(4))....(1+x^(2n))=`

A

`log _(e) ((x)/(1-x)) +c`

B

`-log _(e) ((x)/(1-x)) + (log _(e) x)/( 1-x) +c`

C

`(log _(e)x )/( 1-x) + log _(e) (1-x) +c`

D

`x log _(e) x + log _(e) (1-x) +c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

if |x|<1 then (Lt)_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))......*(1+x^(2n))=

If |x|<1 , then lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^n))=

f(x)=lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))..........(1+x^(2^(n-1))) then

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr -oo)("Lim") f(x)

Lt_(x rarr oo)(1)/((x-3)^(2))

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If |x|<1 then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^(2)+......oo