Home
Class 12
MATHS
int(-pi/4) ^(pi/4) (e^theta(thetasinthet...

`int_(-pi/4) ^(pi/4) (e^theta(thetasintheta))/(e^(2theta)-1)d theta=`

A

3

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^{\theta} \cdot \theta \sin \theta}{e^{2\theta} - 1} \, d\theta, \] we will analyze the function inside the integral to determine if it is odd or even. ### Step 1: Define the function Let \[ f(\theta) = \frac{e^{\theta} \cdot \theta \sin \theta}{e^{2\theta} - 1}. \] ### Step 2: Check if the function is odd To check if \( f(\theta) \) is odd, we need to compute \( f(-\theta) \): \[ f(-\theta) = \frac{e^{-\theta} \cdot (-\theta) \sin(-\theta)}{e^{-2\theta} - 1}. \] Using the properties of sine and exponents, we have: \[ \sin(-\theta) = -\sin(\theta), \] and \[ e^{-2\theta} = \frac{1}{e^{2\theta}}. \] Thus, \[ f(-\theta) = \frac{e^{-\theta} \cdot (-\theta) \cdot (-\sin \theta)}{\frac{1}{e^{2\theta}} - 1} = \frac{e^{-\theta} \cdot \theta \sin \theta}{\frac{1 - e^{2\theta}}{e^{2\theta}}} = \frac{e^{-\theta} \cdot \theta \sin \theta \cdot e^{2\theta}}{1 - e^{2\theta}}. \] This simplifies to: \[ f(-\theta) = \frac{e^{\theta} \cdot \theta \sin \theta}{1 - e^{2\theta}}. \] ### Step 3: Rewrite the denominator Notice that: \[ 1 - e^{2\theta} = -(e^{2\theta} - 1). \] Thus, we can write: \[ f(-\theta) = -\frac{e^{\theta} \cdot \theta \sin \theta}{e^{2\theta} - 1} = -f(\theta). \] ### Step 4: Conclusion about the function Since \( f(-\theta) = -f(\theta) \), we conclude that \( f(\theta) \) is an odd function. ### Step 5: Evaluate the integral The integral of an odd function over a symmetric interval about the origin is zero: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(\theta) \, d\theta = 0. \] Thus, the final answer is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x)) and I_(2)=int_(0)^(pi//4)(e^(tan^(7)theta)sintheta)/((2-tan^(2)theta)cos^(3)theta d theta ,then find the value of (l_(1))/(l_(2)) .

int_0^(pi/4) (2sinthetacostheta)/(sin^4theta+cos^4theta)d theta

Let the be an integrable function defined on [0,a] if I_(1)=int_(pi//2)^(pi//2) cos theta f(sin theta cos ^(2) theta)d theta and I_(2)=int_(0)^(pi//2)sin 2 theta f(sin theta cos ^(2) theta)d theta then

int_(0)^((pi)/(4))theta sec^(2)theta d theta

int_ (0) ^ (pi / 2) ((theta) / (sin theta)) ^ (2) d theta =

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(3)theta d theta

The value of int_(-(pi)/(4))^((pi)/(4))log(sec theta-tan theta)d theta