Home
Class 12
MATHS
int (x ^(n-1))/( x ^(2n) + a ^(2)) dx =...

`int (x ^(n-1))/( x ^(2n) + a ^(2)) dx =`

A

`(1)/(na) tan ^(-1) ((x ^(n))/( a )) +C`

B

`(n)/(a) tan ^(-1) ((x ^(n))/( a )) +C`

C

`(n)/(a) sin ^(-1) ((x ^(n))/(a)) +C`

D

`(n)/(a) cos ^(-1) ((x ^(n))/( a )) +C `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^{n-1}}{x^{2n} + a^2} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = x^n \). Then, differentiating both sides gives: \[ dt = n x^{n-1} \, dx \quad \Rightarrow \quad dx = \frac{dt}{n x^{n-1}}. \] ### Step 2: Express \( x^{n-1} \) in terms of \( t \) From the substitution \( t = x^n \), we have: \[ x^{n-1} = \frac{t^{(n-1)/n}}{x} = \frac{t^{(n-1)/n}}{t^{1/n}} = t^{(n-1)/n} \cdot t^{-1/n} = t^{(n-1)/n - 1/n} = t^{(n-2)/n}. \] ### Step 3: Substitute in the integral Now we can rewrite the integral: \[ \int \frac{x^{n-1}}{x^{2n} + a^2} \, dx = \int \frac{t^{(n-2)/n}}{t^2 + a^2} \cdot \frac{dt}{n t^{(n-1)/n}}. \] This simplifies to: \[ \frac{1}{n} \int \frac{dt}{t^2 + a^2}. \] ### Step 4: Use the formula for the integral We know that: \[ \int \frac{1}{t^2 + a^2} \, dt = \frac{1}{a} \tan^{-1}\left(\frac{t}{a}\right) + C. \] Thus, we substitute this result into our integral: \[ \frac{1}{n} \cdot \frac{1}{a} \tan^{-1}\left(\frac{t}{a}\right) + C. \] ### Step 5: Substitute back for \( t \) Recalling that \( t = x^n \), we substitute back: \[ \frac{1}{na} \tan^{-1}\left(\frac{x^n}{a}\right) + C. \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{x^{n-1}}{x^{2n} + a^2} \, dx = \frac{1}{na} \tan^{-1}\left(\frac{x^n}{a}\right) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int(2x^(n-1))/(x^(n)+3)dx

int x ^ (2n-1) cos x ^ (n) dx

int(x^(n-1)dx)/( sqrt(a^(n)+x^(n)))

"int x^(n)(log x)^(2)dx

int (x + (1)/(x)) ^(n +5) ((x ^(2) -1)/( x ^(2))) dx is equal to:

int(x^(n-1))/(sqrt(1+4x^(n)))dx

Evaluate int(x^(2)+n(n-1))/((x sin x + n cos x)^(2))dx .