Home
Class 12
MATHS
If intf(x)cos x dx = 1/2 f^(2)(x)+C, the...

If `intf(x)cos x dx = 1/2 f^(2)(x)+C`, then `f(x)` can be

A

x

B

1

C

`cos x`

D

`sin x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

If int f(x)cos xdx=(1)/(2)f^(2)(x)+C" ,then "f(x)" can be "P sin x .Find the value of "P

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c, then f(x) can be

If intf(x)dx=2[f(x)]^(3)+c , then f(x) can be

If intf(x)sec^(2)xdx=(1)/(2)[f(x)]^(2)+c, then : f(x) can be

If int f(x) dx = 2 cos sqrt(x) + c , then f(x) =

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these