Home
Class 12
MATHS
The value of int (sqrt ( log 2 )) ^(sqrt...

The value of `int _(sqrt ( log 2 )) ^(sqrt( log 3 )) (x sin x ^(2))/( sin x ^(2) + sin (log 6 -x ^(2)))dx` is

A

`1/4 ln""3/2`

B

`1/2 ln""3/2`

C

`ln""3/2`

D

`1/6ln""3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\sqrt{\log 2}}^{\sqrt{\log 3}} \frac{x \sin(x^2)}{\sin(x^2) + \sin(\log 6 - x^2)} \, dx, \] we will follow the steps outlined in the video transcript. ### Step 1: Change of Variable Let \( t = x^2 \). Then, \( dx = \frac{1}{2\sqrt{t}} \, dt \). The limits change as follows: - When \( x = \sqrt{\log 2} \), \( t = \log 2 \). - When \( x = \sqrt{\log 3} \), \( t = \log 3 \). Thus, the integral becomes: \[ I = \int_{\log 2}^{\log 3} \frac{\sqrt{t} \sin(t)}{\sin(t) + \sin(\log 6 - t)} \cdot \frac{1}{2\sqrt{t}} \, dt = \frac{1}{2} \int_{\log 2}^{\log 3} \frac{\sin(t)}{\sin(t) + \sin(\log 6 - t)} \, dt. \] ### Step 2: Use Symmetry Using the property of definite integrals, we can express \( I \) as: \[ I = \frac{1}{2} \int_{\log 2}^{\log 3} \frac{\sin(t)}{\sin(t) + \sin(\log 6 - t)} \, dt. \] Now, let's consider the integral: \[ \int_{\log 2}^{\log 3} \frac{\sin(\log 6 - t)}{\sin(\log 6 - t) + \sin(t)} \, dt. \] By substituting \( u = \log 6 - t \), we find that the limits change accordingly, and we can show that this integral is equal to \( I \). ### Step 3: Combine Integrals Now we have: \[ I + I = \int_{\log 2}^{\log 3} \left( \frac{\sin(t)}{\sin(t) + \sin(\log 6 - t)} + \frac{\sin(\log 6 - t)}{\sin(\log 6 - t) + \sin(t)} \right) dt. \] This simplifies to: \[ 2I = \int_{\log 2}^{\log 3} dt = \log 3 - \log 2 = \log\left(\frac{3}{2}\right). \] ### Step 4: Solve for \( I \) Thus, we have: \[ I = \frac{1}{2} \log\left(\frac{3}{2}\right). \] ### Final Answer The value of the integral is: \[ \boxed{\frac{1}{2} \log\left(\frac{3}{2}\right)}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

The value of int_(sqrt(ln2))^(sqrt(ln3))(x sin x^(2))/(sin x^(2)+sin(ln6-x^(2)))dx is (A) (1)/(4)ln((3)/(2))(B)(1)/(2)ln((3)/(2))(C)ln((3)/(2))(D)(1)/(6)ln((3)/(2))

int_(sqrt(ln2))^(sqrt(ln3))(x sin x^(2))/(sin x^(2)+sin(ln6-x^(2)))dx is

int sqrt(x)(log x)^(2)dx

int _( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

int(sqrt((2+log x)))/(x)dx

int sin(log x)dx

int(sin(log x))/(x^(3))dx

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

int (1)/(x sin^(2) (log x))dx

the value of int x*(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx