Home
Class 12
MATHS
The value of int((1+x))/(x(1+x e^(x))^(2...

The value of `int((1+x))/(x(1+x e^(x))^(2))dx`, is equal to

A

`log | (x e ^(x))/( 1 + xe ^(x))| + (1)/( 1 + xe^(x ))+c`

B

`(1 + xe ^(x)) + log | (xe ^(x))/( 1 + xe^(x))|+c`

C

`(1)/( 1 + xe ^(x)) + log |xe ^(x) (1 + xe ^(x))|+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/((e^(x)+e^(-x))^(2))dx is equal to

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

int(x e^(x))/((1+x)^(2)) dx is equal to

int _(-1)^(1) x^(3) e^(x^(4)) dx is equal to

int(e^(x))/((1+e^(x))(2+e^(x)))dx

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

The value of int_(0) ^(1) (dx )/( e ^(x) + e) is equal to

The value of int(dx)/((e^(x)+1)(2e^(x)+3)) is equal to

int(x+1)^(2)e^(x)dx is equal to