Home
Class 12
MATHS
If f(x) = pe^(2x) + qe^x + rx satisfies...

If `f(x) = pe^(2x) + qe^x + rx` satisfies the condition `f(0)=-1, f' (In 2)=31 and int_0^(In4) (f(x)-rx)dx=39/2`, then the value of `(p+q+ r)` is equal to

A

`P=2, Q=-3,R=4`

B

`P=-5, Q=2,R=3`

C

`P=5,Q=-2,R=3`

D

`P=5, Q=-6,R=3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-1 CONCEPT BUILDER|59 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=pe^(2x)+qe^(x)+rx satisfies the condition f(0)=-1,f'(In2)=31 and int_(0)^(In4)(f(x)-rx)dx=(39)/(2) ,then the value of (p+q+r) is equal to

If f(x)=Ax^(2)+Bx satisfies the conditions f'(1)=8 and int_(0)^(1)f(x)dx=(8)/(3), then

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Ify=f(x) satisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0) then f(x)=