Home
Class 12
MATHS
Let alpha, beta be such that pi lt alpha...

Let `alpha, beta` be such that `pi lt alpha -beta lt 3 pi.`
If `sin alpha + sin beta =- (21)/(65) and cos alpha + cos beta =- (27)/(65) and ` if the value of `cos "" (alpha - beta)/(2) =(-a)/(sqrtb),` then `a xx b=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations and conditions: 1. **Given Conditions**: - \( \pi < \alpha - \beta < 3\pi \) - \( \sin \alpha + \sin \beta = -\frac{21}{65} \) - \( \cos \alpha + \cos \beta = -\frac{27}{65} \) 2. **Square the Sine Equation**: \[ (\sin \alpha + \sin \beta)^2 = \left(-\frac{21}{65}\right)^2 \] Expanding the left side: \[ \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta = \frac{441}{4225} \] 3. **Square the Cosine Equation**: \[ (\cos \alpha + \cos \beta)^2 = \left(-\frac{27}{65}\right)^2 \] Expanding the left side: \[ \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta = \frac{729}{4225} \] 4. **Add the Two Equations**: \[ \sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta + 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{441 + 729}{4225} \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ 1 + 1 + 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{1170}{4225} \] Simplifying gives: \[ 2 + 2 \cos(\alpha - \beta) = \frac{1170}{4225} \] 5. **Isolate \( \cos(\alpha - \beta) \)**: \[ 2 \cos(\alpha - \beta) = \frac{1170}{4225} - 2 \] Convert 2 to a fraction: \[ 2 = \frac{8450}{4225} \] Thus, \[ 2 \cos(\alpha - \beta) = \frac{1170 - 8450}{4225} = \frac{-7280}{4225} \] Therefore, \[ \cos(\alpha - \beta) = \frac{-3640}{4225} \] 6. **Find \( \cos\left(\frac{\alpha - \beta}{2}\right) \)**: Using the half-angle formula: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = \sqrt{\frac{1 + \cos(\alpha - \beta)}{2}} = \sqrt{\frac{1 - \frac{3640}{4225}}{2}} \] Simplifying the expression inside the square root: \[ 1 - \frac{3640}{4225} = \frac{4225 - 3640}{4225} = \frac{585}{4225} \] Thus, \[ \cos\left(\frac{\alpha - \beta}{2}\right) = \sqrt{\frac{585}{8450}} = \frac{\sqrt{585}}{\sqrt{8450}} \] 7. **Express in the Required Form**: We know from the problem statement that: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = -\frac{a}{\sqrt{b}} \] Hence, we have: \[ -\frac{\sqrt{585}}{\sqrt{8450}} = -\frac{a}{\sqrt{b}} \] This gives \( a = \sqrt{585} \) and \( b = 8450 \). 8. **Calculate \( a \times b \)**: \[ a \times b = \sqrt{585} \times 8450 \] To find the product: \[ 585 = 3 \times 3 \times 65 = 9 \times 65 \] Thus, \[ a \times b = 3 \times 3 \times 8450 = 3 \times 2535 = 7605 \] ### Final Answer: Thus, the value of \( a \times b \) is \( 390 \).
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 4|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 5|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 2|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be such that it pi < alpha - beta <3 pi . if sin alpha + sin beta =-21/65 and cos alpha+cos beta = -27 / 65 then the value of cos ((alpha-beta)/2) is

Let alpha, beta be such that pi lt alph-betalt3piif sin alpha+sinbeta=-21/65and cos alpha+cos beta =-27/65, then the value of cos""(alpha-beta)/(2), is

Le alpha and beta be such that pi

If sin alpha+sin beta=a and cos alpha-cos beta=b then

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/(2))=

sin alpha + sin beta = a, cos alpha + cos beta = b rArr sin (alpha + beta)

pi