Home
Class 12
MATHS
In triangle ABC given 9a ^(2) + 9b ^(2) ...

In triangle ABC given `9a ^(2) + 9b ^(2) - 17 c ^(2) =0.` If `(cot A + cot B)/(cot C) =m/n,` then the value of `(m+n)` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning presented in the video transcript. ### Step 1: Analyze the given equation We start with the equation given in the problem: \[ 9a^2 + 9b^2 - 17c^2 = 0 \] This can be rearranged to: \[ 9a^2 + 9b^2 = 17c^2 \] ### Step 2: Express \( a^2 + b^2 \) From the rearranged equation, we can express \( a^2 + b^2 \) as: \[ a^2 + b^2 = \frac{17}{9}c^2 \] ### Step 3: Use the cotangent formula We need to find the value of \( \frac{\cot A + \cot B}{\cot C} \). Recall that: \[ \cot A = \frac{\cos A}{\sin A}, \quad \cot B = \frac{\cos B}{\sin B}, \quad \cot C = \frac{\cos C}{\sin C} \] Thus, \[ \frac{\cot A + \cot B}{\cot C} = \frac{\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B}}{\frac{\cos C}{\sin C}} = \frac{\cos A \sin C + \cos B \sin C}{\sin A \cos C} \] ### Step 4: Apply the Law of Sines Using the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \] This gives us: \[ \sin A = \frac{a}{2R}, \quad \sin B = \frac{b}{2R}, \quad \sin C = \frac{c}{2R} \] ### Step 5: Substitute values for cosines Using the cosine rule: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos B = \frac{c^2 + a^2 - b^2}{2ca}, \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] ### Step 6: Substitute into the cotangent expression Now substituting the values of \( \cos A, \cos B, \cos C, \sin A, \sin B, \sin C \) into the expression: \[ \frac{\frac{b^2 + c^2 - a^2}{2bc} \cdot \frac{c}{2R} + \frac{c^2 + a^2 - b^2}{2ca} \cdot \frac{c}{2R}}{\frac{a^2 + b^2 - c^2}{2ab} \cdot \frac{c}{2R}} \] ### Step 7: Simplify the expression After simplification, we will have: \[ \frac{(b^2 + c^2 - a^2) + (c^2 + a^2 - b^2)}{a^2 + b^2 - c^2} \] This simplifies to: \[ \frac{2c^2}{a^2 + b^2 - c^2} \] ### Step 8: Substitute \( a^2 + b^2 \) from Step 2 Substituting \( a^2 + b^2 = \frac{17}{9}c^2 \): \[ \frac{2c^2}{\frac{17}{9}c^2 - c^2} = \frac{2c^2}{\frac{17}{9}c^2 - \frac{9}{9}c^2} = \frac{2c^2}{\frac{8}{9}c^2} = \frac{2}{\frac{8}{9}} = \frac{2 \cdot 9}{8} = \frac{18}{8} = \frac{9}{4} \] ### Step 9: Identify \( m \) and \( n \) From \( \frac{\cot A + \cot B}{\cot C} = \frac{9}{4} \), we have \( m = 9 \) and \( n = 4 \). ### Step 10: Calculate \( m + n \) Thus, the value of \( m + n = 9 + 4 = 13 \). ### Final Answer The final answer is: \[ \boxed{13} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 4|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 5|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 2|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC if 9(a^(2)+b^(2))=17c^(2) then the value of the (cot A+cot B)/(cot C) is

In a triangle ABC if a^(2)+b^(2)=101c^(2) then find the value of (cot C)/(cot A+cot B)

In Delta ABCa^(2)+b^(2)=2019c^(2), then 1009((cot A+cot B)/(cot C)) is

In a Delta ABC, If cot A cot B cot C>0 then the triangle is

If for Delta ABC,cot A cot B cot C>0 then the triangle is

In o+ABC, if cot A+cot B+cot C=0 then find the value of cos A cos B cos C

For any triangle ABC, prove that (b^(2)c^(2))cot A+(c^(2)a^(2))cot B+(a^(2)b^(2))cot C=

In Delta ABC, if cot A+cot B+cot C=0 then find the value of cos A cos B cos C.

If, in a Delta ABC, b^(2) + c^(2) = 3a^(2) , then : cot B + cot C - cot A =