Home
Class 12
MATHS
The total number of integral value of x ...

The total number of integral value of x satisfying the equation ` x ^(log_(3)x ^(2))-10=1 //x ^(2) ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{(\log_{3}(x^2))} - 10 = \frac{1}{x^2} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ x^{(\log_{3}(x^2))} - 10 = \frac{1}{x^2} \] We can rewrite \( \log_{3}(x^2) \) using the property of logarithms: \[ \log_{3}(x^2) = 2 \cdot \log_{3}(x) \] Thus, we can rewrite the left-hand side: \[ x^{(2 \cdot \log_{3}(x))} - 10 = \frac{1}{x^2} \] ### Step 2: Simplify the left-hand side Using the property of exponents, we can express \( x^{(2 \cdot \log_{3}(x))} \) as: \[ x^{(2 \cdot \log_{3}(x))} = (x^{\log_{3}(x)})^2 = 3^{(\log_{3}(x))^2} \] However, we can also express it directly as: \[ x^{(2 \cdot \log_{3}(x))} = 3^{\log_{3}(x^2)} = x^2 \] So the equation becomes: \[ x^2 - 10 = \frac{1}{x^2} \] ### Step 3: Multiply through by \( x^2 \) To eliminate the fraction, we multiply both sides by \( x^2 \): \[ x^4 - 10x^2 = 1 \] ### Step 4: Rearrange the equation Rearranging gives us a standard polynomial form: \[ x^4 - 10x^2 - 1 = 0 \] ### Step 5: Let \( y = x^2 \) Now, we can substitute \( y = x^2 \). This transforms our equation into: \[ y^2 - 10y - 1 = 0 \] ### Step 6: Solve the quadratic equation We can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -10, c = -1 \): \[ y = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ y = \frac{10 \pm \sqrt{100 + 4}}{2} \] \[ y = \frac{10 \pm \sqrt{104}}{2} \] \[ y = \frac{10 \pm 2\sqrt{26}}{2} \] \[ y = 5 \pm \sqrt{26} \] ### Step 7: Find \( x \) values Since \( y = x^2 \), we have: \[ x^2 = 5 + \sqrt{26} \quad \text{or} \quad x^2 = 5 - \sqrt{26} \] Now, we need to check if these values yield integral values for \( x \). ### Step 8: Analyze the roots 1. For \( x^2 = 5 + \sqrt{26} \): - This is positive and not a perfect square. 2. For \( x^2 = 5 - \sqrt{26} \): - Calculate \( 5 - \sqrt{26} \): - Since \( \sqrt{26} \approx 5.1 \), \( 5 - \sqrt{26} < 0 \), which means no real \( x \) exists. ### Conclusion Since neither \( 5 + \sqrt{26} \) nor \( 5 - \sqrt{26} \) provides integral solutions for \( x \), the total number of integral values of \( x \) satisfying the original equation is: \[ \text{Total integral values of } x = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 7|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 8|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 5|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The number of integral values of x satisfying the equation |x-|x-4||=4 is

The number of integral values of x satisfying |x^2-1|leq3 is

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

Value of x satisfying the equation log_(2)(9-2^(x))=x-3 is :

Sum of integral values of x satisfying the inequality 3((5)/(2))log_(3)(12-3x)

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is