Home
Class 12
MATHS
If the geometric mean of a and b is (a^(...

If the geometric mean of a and b is `(a^(n+1)+b^(n+1))/(a^(n)+b^(n))` then n = ?

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 10|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 11|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 8|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

In the arithmetic mean of a and b is (a^(n)+b^(n))/(a^(n-1)+b^(n-1)) then n= ?

If the G.M. of a and b is (a^(n)+b^(n))/(a^(n-1)+b^(n-1)) then find the value of n.

Insert n geometric means between a and b.

lim_(n rarr oo)((a^(n+1)+b^(n+1))/(a^(n)-b^(n))), 0 lt a lt b

Find the value of n so that (a^(n+1)+b^(n+1))/(a^(n)+b^(n)) may be the geometric mean between a and b.

if (a^(n+1)+b^(n+1))/(a^(n)+b^(n)) harmonic mean of a&b then n is