Home
Class 12
MATHS
underset(x to 0) lim(sin^(2) x)/(sqrt2 -...

`underset(x to 0) lim(sin^(2) x)/(sqrt2 - sqrt(1+cos x))` equals

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 14|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 11|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin^(2) x)/(sqrt2 - sqrt(1+cos x)) equals

lim_(x rarr0)(sin^(2)x)/(sqrt(2)-sqrt(1+cos x))

If the value of underset(x to 0)lim (sqrt(2+x)-sqrt2)/(x)" is equal to "1/(a sqrt2) then 'a' equals

The limit underset(x to 2)lim (2^(x)+2^(3-x)-6)/(sqrt2^(-x)-2^(1-x)) is equal to

underset(x to 0)lim (e^(x^(2))-cos x)/(sin^(2) x) is equal to :

lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =