Home
Class 12
MATHS
lim ( x to 0) (tan 2x -x)/( 3x - sin x)=...

`lim _( x to 0) (tan 2x -x)/( 3x - sin x)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} \), we can follow these steps: ### Step 1: Identify the Form When we substitute \( x = 0 \) directly into the limit, we get: \[ \tan(2 \cdot 0) - 0 = 0 \quad \text{and} \quad 3 \cdot 0 - \sin(0) = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] We need to differentiate the numerator and the denominator. ### Step 3: Differentiate the Numerator and Denominator 1. **Numerator**: \( f(x) = \tan(2x) - x \) - The derivative \( f'(x) = 2\sec^2(2x) - 1 \) 2. **Denominator**: \( g(x) = 3x - \sin x \) - The derivative \( g'(x) = 3 - \cos x \) ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2\sec^2(2x) - 1}{3 - \cos x} \] ### Step 5: Substitute \( x = 0 \) Now we substitute \( x = 0 \): - For the numerator: \[ 2\sec^2(2 \cdot 0) - 1 = 2\sec^2(0) - 1 = 2 \cdot 1 - 1 = 1 \] - For the denominator: \[ 3 - \cos(0) = 3 - 1 = 2 \] ### Step 6: Calculate the Limit Now we can calculate the limit: \[ \lim_{x \to 0} \frac{1}{2} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 14|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 11|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan2x-x)/(3x-sin x)

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

lim_(x to 0) (2x)/(tan3x)=?

lim_(x rarr0)(tan x-x)/(x^(3))

lim_(x rarr0)(tan x-x)/(x^(3))

Evaluate the following (10-17) limits : lim_(x to 0)(tan3x+x)/(2x+sin4x)

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

Evaluate: lim_(x rarr0)(tan2x-x)/(3x-sin x)

Evaluate lim_(x to 0) (tan x - "sin" x)/(x^(3))