Home
Class 12
MATHS
The value of lim (x to 0) [(a)/(x) - cot...

The value of `lim _(x to 0) [(a)/(x) - cot ""(x)/(a)]` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{a}{x} - \frac{\cot(x)}{a} \right) \), we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the limit expression: \[ \lim_{x \to 0} \left( \frac{a}{x} - \frac{\cot(x)}{a} \right) \] This can be expressed with a common denominator: \[ = \lim_{x \to 0} \left( \frac{a^2 - x \cos(x)}{ax} \right) \] ### Step 2: Simplify the limit Now, we can rewrite the limit as: \[ = \lim_{x \to 0} \frac{a^2 - x \cos(x)}{ax} \] We can factor out \( a \) from the denominator: \[ = \frac{1}{a} \lim_{x \to 0} \frac{a^2 - x \cos(x)}{x} \] ### Step 3: Evaluate the limit As \( x \to 0 \), both the numerator and denominator approach 0, resulting in the indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule: \[ \text{Differentiate the numerator: } \frac{d}{dx}(a^2 - x \cos(x)) = -\cos(x) + x \sin(x) \] \[ \text{Differentiate the denominator: } \frac{d}{dx}(x) = 1 \] Thus, we can rewrite the limit: \[ = \frac{1}{a} \lim_{x \to 0} \frac{-\cos(x) + x \sin(x)}{1} \] ### Step 4: Substitute \( x = 0 \) Now, we substitute \( x = 0 \): \[ = \frac{1}{a} \left( -\cos(0) + 0 \cdot \sin(0) \right) = \frac{1}{a} \left( -1 + 0 \right) = -\frac{1}{a} \] ### Final Answer Thus, the value of the limit is: \[ \boxed{-\frac{1}{a}} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 14|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 11|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) ((1)/(x) - cot x) equals

The value of lim_(x rarr0)[(a)/(x)-cot((x)/(a))] is

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(x to 0)(e^(2x)-1)/(x) is :

The value of lim_(x to 0)(e^(4x)-1)/x is :

The value of lim_(x rarr0)[(x)/(sin x)] is

The value of lim_(x to 0) (5^x - 5^(-x) )/(2x) is

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

The value of lim x rarr0[(sin x)/(x)] is