Home
Class 12
MATHS
Let f (2) = 4 and f '(2) =4. If lim ( x...

Let `f (2) = 4 and f '(2) =4. If lim _( xto 2) (xf (2) -2 f (x))/(x-2)=-a,` then a is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 2} \frac{x f(2) - 2 f(x)}{x - 2} \] Given that \( f(2) = 4 \) and \( f'(2) = 4 \). ### Step 1: Substitute \( f(2) \) into the limit expression Substituting \( f(2) = 4 \) into the limit gives: \[ \lim_{x \to 2} \frac{x \cdot 4 - 2 f(x)}{x - 2} = \lim_{x \to 2} \frac{4x - 2f(x)}{x - 2} \] ### Step 2: Evaluate the limit directly Now, substituting \( x = 2 \) directly into the expression results in: \[ \frac{4 \cdot 2 - 2 f(2)}{2 - 2} = \frac{8 - 8}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: 1. Differentiate the numerator: \( \frac{d}{dx}(4x - 2f(x)) = 4 - 2f'(x) \) 2. Differentiate the denominator: \( \frac{d}{dx}(x - 2) = 1 \) Thus, we have: \[ \lim_{x \to 2} \frac{4 - 2f'(x)}{1} \] ### Step 4: Substitute \( x = 2 \) again Now substituting \( x = 2 \): \[ 4 - 2f'(2) = 4 - 2 \cdot 4 = 4 - 8 = -4 \] ### Step 5: Relate to \( -a \) From the problem, we know that: \[ \lim_{x \to 2} \frac{x f(2) - 2 f(x)}{x - 2} = -a \] Thus, we have: \[ -4 = -a \implies a = 4 \] ### Final Answer Therefore, the value of \( a \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 14|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 11|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, and then lim_(x to 2) (2x^(2)-4f(x))/(x-2) is equal to

Let f: R rarr R be a function such that f(2)=4 and f'(2)=1 . Then, the value of lim_(x rarr 2) (x^(2)f(2)-4f(x))/(x-2) is equal to