Home
Class 12
MATHS
If underset(x to 1)(lim) (x^(3) - 1)/(x ...

If `underset(x to 1)(lim) (x^(3) - 1)/(x - 1) = underset(x to k)(lim) (x^(4) - k^(4))/(x^(3) - k^(3))`, find the value of k.

Text Solution

Verified by Experts

The correct Answer is:
2.67
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 14|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 11|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Find underset(x to oo)lim (1+1/x^2)^x

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

Value of the underset(x to -2)lim (tan pi x)/(x+2)+underset(x to oo)lim (1+1/x^(2))^(x) is