Home
Class 12
MATHS
The value of lim(xto0)(x cosx-log(1+x))/...

The value of `lim_(xto0)(x cosx-log(1+x))/(x^(2))` is

Text Solution

Verified by Experts

The correct Answer is:
0.5
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 14|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 11|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0)(e^(x)-e^(x cosx))/(x+sinx) is

The value of lim_(xrarr0) (1+sinx-cosx+log(1-x))/(x^3) , is

Evaluate lim_(xto0)(log(5+x)-log(5-x))/x

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals