Home
Class 12
MATHS
If A = [{:("cos" theta, -"sin"theta),("s...

If `A = [{:("cos" theta, -"sin"theta),("sin"theta, "cos"theta):}]`, then the matrix `A^(-50) " when " theta = (pi)/(12)`, is equal to

Text Solution

Verified by Experts

The correct Answer is:
0
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 19|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 20|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 17|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)] , then E(alpha).E(beta) is equal to

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

Knowledge Check

  • If A=[(costheta, -sin theta ),(sin theta, cos theta) ] , then the matrix A^(-50) when theta=pi/12 , is equal to :

    A
    `[(1/2,sqrt3,2),(-sqrt3/2, 1/2)]`
    B
    `[(sqrt3/2, -1/2),(1/2,sqrt3/2)]`
    C
    `[(sqrt3/2,1/2),(-1/2, sqrt3/2)]`
    D
    `[(1/2, -sqrt3/2),(sqrt3/2,1/2)]`
  • Inverse of the matrix [{:(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta):}] is

    A
    `[{:(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta):}]`
    B
    `[{:(cos 2 theta, sin 2 theta),(sin 2 theta, -cos 2 theta):}]`
    C
    `[{:(cos 2 theta, sin 2 theta),(sin 2 theta, cos 2 theta):}]`
    D
    `[{:(cos 2 theta, sin 2 theta),(-sin 2 theta, cos 2 theta):}]`
  • cos theta [(cos theta, sin theta),(-sin theta, cos theta)]+sin theta[(sin theta, -cos theta),(cos theta, sin theta)] is equal to

    A
    `[(1,0),(0,1)]`
    B
    `[(0,1),(1,0)]`
    C
    `[(0,0),(1,1)]`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Let theta = (pi)/(5) and A =[{:(cos theta, sin theta),(-sin theta, cos theta):}] . If B = A + A^(4) , then det (B).

    If x=(2sin theta)/(1+cos theta+sin theta), then prove that (1-cos theta+sin theta)/(1+sin theta) is equal to x

    Inverse of the matrix [(cos 2 theta,-sin 2theta),(sin 2 theta, cos 2theta)] is

    ("sin" 8 theta "cos" theta -"sin" 6 theta "cos"3 theta)/("cos" 2 theta "cos" theta -"sin" 3 theta "sin" 4 theta) is equal to

    Inverse of the matrix A=[[cos2theta, -sin2theta], [sin2theta, cos2theta]] is