Home
Class 12
MATHS
Let A = [{:(cos alpha,- sin alpha ), ( s...

Let `A = [{:(cos alpha,- sin alpha ), ( sin alpha , cos alpha ):}], (a in R)` such that ` A ^(32) = [{:(0,-1), (1, 0):}]` is the value of `alpha ` is `(pi)/(2^(k)),` then the value of k is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that \( \alpha = \frac{\pi}{2^k} \) and \( A^{32} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Understanding the Matrix A**: The matrix \( A \) is defined as: \[ A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] This is a rotation matrix that rotates vectors by an angle \( \alpha \). 2. **Finding \( A^2 \)**: To find \( A^{32} \), we first compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] Using matrix multiplication: \[ A^2 = \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha & -2 \sin \alpha \cos \alpha \\ 2 \sin \alpha \cos \alpha & \cos^2 \alpha - \sin^2 \alpha \end{pmatrix} \] This simplifies to: \[ A^2 = \begin{pmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix} \] 3. **Using Induction to Generalize**: We can use mathematical induction to show that: \[ A^n = \begin{pmatrix} \cos(n\alpha) & -\sin(n\alpha) \\ \sin(n\alpha) & \cos(n\alpha) \end{pmatrix} \] - **Base Case**: For \( n = 1 \), it holds true. - **Inductive Step**: Assume true for \( n = k \), then for \( n = k + 1 \): \[ A^{k+1} = A^k \cdot A = \begin{pmatrix} \cos(k\alpha) & -\sin(k\alpha) \\ \sin(k\alpha) & \cos(k\alpha) \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] This results in: \[ A^{k+1} = \begin{pmatrix} \cos((k+1)\alpha) & -\sin((k+1)\alpha) \\ \sin((k+1)\alpha) & \cos((k+1)\alpha) \end{pmatrix} \] Thus, by induction, it holds for all \( n \). 4. **Finding \( A^{32} \)**: From the induction result: \[ A^{32} = \begin{pmatrix} \cos(32\alpha) & -\sin(32\alpha) \\ \sin(32\alpha) & \cos(32\alpha) \end{pmatrix} \] We know from the problem statement: \[ A^{32} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] This implies: \[ \cos(32\alpha) = 0 \quad \text{and} \quad \sin(32\alpha) = 1 \] 5. **Solving for \( \alpha \)**: The equation \( \cos(32\alpha) = 0 \) occurs when: \[ 32\alpha = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] The simplest case is when \( n = 0 \): \[ 32\alpha = \frac{\pi}{2} \implies \alpha = \frac{\pi}{64} \] 6. **Finding \( k \)**: We have \( \alpha = \frac{\pi}{2^k} \). Setting this equal to our result: \[ \frac{\pi}{64} = \frac{\pi}{2^k} \] This gives: \[ 2^k = 64 \implies k = 6 \] ### Final Answer: Thus, the value of \( k \) is \( \boxed{6} \).
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 19|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 20|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 17|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let A = [{:("cos"alpha, -"sin"alpha), ("sin"alpha, "cos"alpha"):}], (alpha in R) such that A^(32) = [{:(0, -1), (1, 0):}] . Then, a value of alpha is

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

Let A=([cos alpha,-sin alphasin alpha,cos alpha]),(alpha in R) such that A^(32)=([0,-11,0]). Then a value of alpha is:

A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I , find the value of alpha .

If A = [ (cos alpha ,- sin alpha ),(sin alpha ,cos alpha)] , then A + A' = I then the value of alpha is :

If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,0),(0,k)] , then k is equal to

If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (alpha + beta),- sin (alpha + beta),1)| , then