Home
Class 12
MATHS
If A = [{:(0,2,0),(0,0,3), (-2,2,0):}] a...

If `A = [{:(0,2,0),(0,0,3), (-2,2,0):}] and B =[{:(1,2,3),(3,4,5),(5,-4,0):}],` then the element of third row and column in AB will be

Text Solution

AI Generated Solution

The correct Answer is:
To find the element of the third row and third column in the product of matrices \( A \) and \( B \), we will follow these steps: ### Step 1: Define the matrices Given matrices are: \[ A = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ -2 & 2 & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & -4 & 0 \end{pmatrix} \] ### Step 2: Identify the element to find We need to find the element at the third row and third column of the product \( AB \). ### Step 3: Calculate the element at the third row and third column To find the element at position (3,3) in the product \( AB \), we use the formula for matrix multiplication: \[ (AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \] For our case, \( i = 3 \) and \( j = 3 \): \[ (AB)_{33} = A_{31}B_{13} + A_{32}B_{23} + A_{33}B_{33} \] Substituting the values: - \( A_{31} = -2 \), \( B_{13} = 3 \) - \( A_{32} = 2 \), \( B_{23} = 5 \) - \( A_{33} = 0 \), \( B_{33} = 0 \) Now calculate: \[ (AB)_{33} = (-2) \cdot (3) + (2) \cdot (5) + (0) \cdot (0) \] \[ = -6 + 10 + 0 \] \[ = 4 \] ### Final Answer The element of the third row and third column in the product \( AB \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 19|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 20|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 17|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If the matrices A = [{:(2,1,3),(4,1,0):}] and B = [{:(1,-1),(0,2),(5,0):}] , then (AB)^T will be

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B =[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then"

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

If A=[(0,2),(0,3)] and B =[(2,5),(0,0)] then AB =[(0,0),(0,0)]