Home
Class 12
MATHS
Let f(x)=[3+4 sin x] (where [ ] denotes ...

Let `f(x)=[3+4 sin x]` (where [ ] denotes the greater integer function). If sum of all the values of 'x' in `[pi,2pi]` where f(x) fails to be differentiable is `(k pi)/2`, then find the value of k.

Text Solution

Verified by Experts

The correct Answer is:
24
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 21|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 22|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 19|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=[3+4sin x] (where I l denotes the greater integer function).If sum of all the values of x' in [pi,2 pi] where f(x) fails to be differentiable is (k pi)/(2), then find the value of k

Let f(x)=[3+4sin x]. If sum of all the values of x in [pi,2 pi] where f(x) fails to differentiable is,(k pi)/(2), then find the value of k .

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

Let f(x)=sin sqrt([a])x (where [1 denotes the greatest integer function).If f is periodic with fundamental period pi, then a belongs to

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .