Home
Class 12
MATHS
The derivative of tan^(-1)((sin x - cos...

The derivative of `tan^(-1)((sin x - cos x)/(sin x + cos x))`, with respect to ` x/2`, where `(x in(0,pi/2))` is

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 21|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 22|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 19|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

(1-cos 2x + sin x)/(sin 2x + cos x) = tan x

int_(0)^( pi/2)(sin x-cos x)/(1+sin x*cos x)*dx

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

tan^(-1)[(2cos x-3sin x)/(3cos x+2sin x)]

The first derivative of the function [cos^(-1)(sin sqrt((1+x)/(2)))+x^(x)] with respect to x at x=1 is

int_ (0) ^ ((pi) / (2)) (sin x-cos x) / (1 + sin x cos x) dx

(1 + sin x-cos x) / (1 + sin x + cos x) = tan ((x) / (2))

(1+sin x+cos x+sin2x+cos2x)/(tan2x)=0