Home
Class 12
MATHS
The minimum value of 4e ^(2x) + 9e^(-2x)...

The minimum value of `4e ^(2x) + 9e^(-2x) ` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( 4e^{2x} + 9e^{-2x} \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Identify the terms**: We have two terms in the expression: \( a = 4e^{2x} \) and \( b = 9e^{-2x} \). 2. **Apply the AM-GM inequality**: According to the AM-GM inequality, for any non-negative real numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] This implies: \[ 4e^{2x} + 9e^{-2x} \geq 2\sqrt{(4e^{2x})(9e^{-2x})} \] 3. **Calculate the product**: Now, calculate \( ab \): \[ ab = (4e^{2x})(9e^{-2x}) = 36 \] 4. **Find the square root**: Therefore, \[ \sqrt{ab} = \sqrt{36} = 6 \] 5. **Substitute back into the inequality**: Now substituting back into the AM-GM inequality: \[ 4e^{2x} + 9e^{-2x} \geq 2 \cdot 6 = 12 \] 6. **Conclusion**: The minimum value of \( 4e^{2x} + 9e^{-2x} \) is \( 12 \). This minimum value occurs when \( 4e^{2x} = 9e^{-2x} \). ### Verification of equality condition: To find when equality holds in the AM-GM inequality, we set: \[ 4e^{2x} = 9e^{-2x} \] This leads to: \[ 4e^{4x} = 9 \implies e^{4x} = \frac{9}{4} \implies 4x = \ln\left(\frac{9}{4}\right) \implies x = \frac{1}{4} \ln\left(\frac{9}{4}\right) \] Thus, the minimum value of \( 4e^{2x} + 9e^{-2x} \) is indeed \( 12 \).
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 22|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 23|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 20|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The minimum value of 4e^(x)+9e^(-x) is

The minimum value of (x - 2) (x-9) is

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is

The minimum value of sqrt(e^(x^(2)) -1) is

Find minimum value of (9-x) (2-x)

The maximum value of x^(4)e^(-x^(2)) is (A) e^(2)(B)e^(-2)(C)12e^(-2)(D)4e^(-2)

If f(x)= e^(coscos^-1x^2+tancot^-1 x^2), then minimum value of f(x) is (A) e (B) e^2 (C) e^(2/3 (D) none of these

The minimum value of 5^(x)+3^(x)+e^(x)+5^(-x)+3^(-x)+e^(-x) is :