Home
Class 12
MATHS
In=int0^(pi//4) tan^n x\ dx, then lim(nt...

`I_n=int_0^(pi//4) tan^n x\ dx`, then `lim_(ntooo) n\ [I_n + I_(n+2)]` is equal to (i)`1/2` (ii)`1` (iii)`infty` (iv) `0`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 23|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 21|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_n=int_0^(pi/4) tan^nx then lim_(nrarroo)n(I_n+I_(n-2)) equals (A) 1/2 (B) 1 (C) oo (D) 0

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals