Home
Class 12
MATHS
Let f be a positive function. If I1 = in...

Let `f` be a positive function. If `I_1 = int_(1-k)^k x f[x(1-x)]\ dx` and `I_2 = int_(1-k)^k f[x(1-x)]\ dx,` where `2k-1 gt 0.` Then `I_1/I_2` is

Text Solution

Verified by Experts

The correct Answer is:
0.5
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 23|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 21|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

Let f be a positive function.Let I_(1)=int_(1-k)^(k)xf([x(1-x)])dxI_(2)=int_(1-k)^(k)f[x(1-x)]dx, where 2k-1>0. Then (I_(1))/(I_(2))is 2(b) k(c)(1)/(2) (d) 1

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

For any tinR and f be a continuous function, let I_1 = int _(sin^2t)^(1+cos^2t) x*f(x(2-x))dx and I_2 =int_(sin^2t)^(1+cos^2t) f(x(2-x))dx. Then I_1/I_2is (i)0 (ii)1 (iii)2 (iv)3

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then