Home
Class 12
MATHS
The area of the region A= {(x,y) in R...

The area of the region
`A= {(x,y) in R xx R|0 le x le 3, 0 le y le 4, x^(2) + 3x}`is

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by \( A = \{(x,y) \in \mathbb{R}^2 | 0 \leq x \leq 3, 0 \leq y \leq 4, y = x^2 + 3x\} \), we will follow these steps: ### Step 1: Determine the intersection points We need to find the intersection points of the parabola \( y = x^2 + 3x \) with the line \( y = 4 \). Set the equations equal to each other: \[ x^2 + 3x = 4 \] Rearranging gives: \[ x^2 + 3x - 4 = 0 \] ### Step 2: Factor the quadratic equation To factor the quadratic equation \( x^2 + 3x - 4 = 0 \), we look for two numbers that multiply to \(-4\) and add to \(3\). The factors are \(4\) and \(-1\): \[ (x + 4)(x - 1) = 0 \] ### Step 3: Solve for \( x \) Setting each factor to zero gives: \[ x + 4 = 0 \quad \Rightarrow \quad x = -4 \quad (\text{not in the interval } [0, 3]) \] \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \quad (\text{valid}) \] ### Step 4: Find the area under the parabola from \( x = 0 \) to \( x = 1 \) The area under the parabola from \( x = 0 \) to \( x = 1 \) can be calculated using integration: \[ \text{Area}_1 = \int_0^1 (x^2 + 3x) \, dx \] Calculating the integral: \[ \int (x^2 + 3x) \, dx = \frac{x^3}{3} + \frac{3x^2}{2} \] Evaluating from \(0\) to \(1\): \[ \text{Area}_1 = \left[ \frac{1^3}{3} + \frac{3(1^2)}{2} \right] - \left[ \frac{0^3}{3} + \frac{3(0^2)}{2} \right] = \frac{1}{3} + \frac{3}{2} \] Finding a common denominator (6): \[ \text{Area}_1 = \frac{2}{6} + \frac{9}{6} = \frac{11}{6} \] ### Step 5: Calculate the area of the rectangle from \( x = 1 \) to \( x = 3 \) The area of the rectangle can be calculated as: \[ \text{Area}_2 = \text{length} \times \text{height} = (3 - 1) \times 4 = 2 \times 4 = 8 \] ### Step 6: Total area Now, we add the areas from both regions: \[ \text{Total Area} = \text{Area}_1 + \text{Area}_2 = \frac{11}{6} + 8 \] Converting \(8\) to sixths: \[ 8 = \frac{48}{6} \] Thus, \[ \text{Total Area} = \frac{11}{6} + \frac{48}{6} = \frac{59}{6} \] ### Final Answer The area of the region \( A \) is: \[ \frac{59}{6} \text{ square units} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 25|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 22|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The area of the region : R = {(x, y) : 5x^2 le y le 2x^2 + 9} is :

Find the area of the region {(x,y) : x^2 le y le x }

Let the area of the region {(x, y): 0 le x le 3 , 0 le y le min{x^2+ 2, 2x 2}} be A. Then 12A is equal to _____.

Find the area of the region [ (x,y) :x^2 le y le x )

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

The area of the region {(x,y):x^(2)+y^(2) le 1 le x+y} , is