Home
Class 12
MATHS
Let veca =hati + hatj + sqrt2 hatk, vecb...

Let `veca =hati + hatj + sqrt2 hatk, vecb = b_(1) hati + b _(2) hatj + sqrt2 hatk and vecc = 5 hati + hatj + sqrt2 hatk` be three vectors such that the projection vector of `vecb` on `veca` is `veca.`
If `veca + vecb` perpendicular to `vecc,` then `|vecb|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \(\vec{b}\) given the conditions involving the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step 1: Define the vectors We have: \[ \vec{a} = \hat{i} + \hat{j} + \sqrt{2} \hat{k} \] \[ \vec{b} = b_1 \hat{i} + b_2 \hat{j} + \sqrt{2} \hat{k} \] \[ \vec{c} = 5 \hat{i} + \hat{j} + \sqrt{2} \hat{k} \] ### Step 2: Find the magnitude of \(\vec{a}\) The magnitude of \(\vec{a}\) is calculated as follows: \[ |\vec{a}| = \sqrt{1^2 + 1^2 + (\sqrt{2})^2} = \sqrt{1 + 1 + 2} = \sqrt{4} = 2 \] ### Step 3: Use the projection formula The projection of \(\vec{b}\) on \(\vec{a}\) is given by: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a} \] Given that this projection equals \(\vec{a}\), we have: \[ \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a} = \vec{a} \] This implies: \[ \vec{a} \cdot \vec{b} = |\vec{a}|^2 \] Substituting the values: \[ \vec{a} \cdot \vec{b} = (1)(b_1) + (1)(b_2) + (\sqrt{2})(\sqrt{2}) = b_1 + b_2 + 2 \] Thus: \[ b_1 + b_2 + 2 = 4 \quad \Rightarrow \quad b_1 + b_2 = 2 \quad \text{(Equation 1)} \] ### Step 4: Use the perpendicular condition Since \(\vec{a} + \vec{b}\) is perpendicular to \(\vec{c}\), we have: \[ (\vec{a} + \vec{b}) \cdot \vec{c} = 0 \] Calculating \(\vec{a} + \vec{b}\): \[ \vec{a} + \vec{b} = (1 + b_1) \hat{i} + (1 + b_2) \hat{j} + (2\sqrt{2}) \hat{k} \] Now we compute the dot product: \[ (1 + b_1) \cdot 5 + (1 + b_2) \cdot 1 + (2\sqrt{2}) \cdot \sqrt{2} = 0 \] This simplifies to: \[ 5 + 5b_1 + 1 + b_2 + 4 = 0 \] Combining terms gives: \[ 5b_1 + b_2 + 10 = 0 \quad \Rightarrow \quad 5b_1 + b_2 = -10 \quad \text{(Equation 2)} \] ### Step 5: Solve the system of equations Now we have two equations: 1. \(b_1 + b_2 = 2\) 2. \(5b_1 + b_2 = -10\) Subtract Equation 1 from Equation 2: \[ (5b_1 + b_2) - (b_1 + b_2) = -10 - 2 \] This simplifies to: \[ 4b_1 = -12 \quad \Rightarrow \quad b_1 = -3 \] Substituting \(b_1\) back into Equation 1: \[ -3 + b_2 = 2 \quad \Rightarrow \quad b_2 = 5 \] ### Step 6: Write \(\vec{b}\) and find its magnitude Now we can express \(\vec{b}\): \[ \vec{b} = -3 \hat{i} + 5 \hat{j} + \sqrt{2} \hat{k} \] To find the magnitude of \(\vec{b}\): \[ |\vec{b}| = \sqrt{(-3)^2 + 5^2 + (\sqrt{2})^2} = \sqrt{9 + 25 + 2} = \sqrt{36} = 6 \] ### Final Answer Thus, the magnitude of \(\vec{b}\) is: \[ |\vec{b}| = 6 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 26|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

let veca=hati_+hatj+sqrt2hatk vecb=b_1hati+b_2hatJ+sqrt2hatk vecc=5hati+hatj+sqrt2hatk & (veca+vecb) is perpendicular to vecc and projection vector of vecb on veca is veca then find |vecb| (a) 6 (b) sqrt(22) (c) sqrt(32) (d) 11

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(2) is equal to

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,