Home
Class 12
MATHS
Let vecu= hati+hatj, vecv = hati -hatj ...

Let `vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk`. If `hatn` is a unit vector such that `vecu.hatn =0 and vecv.hatn=0` then find the value of `|vecw.hatn|`

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 26|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to

Let vecu=hai+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn isa unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If hat(n) =0 then |vecW.hatn| is equal to

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a unit vector, then the maximum value of the scalar triple product [ vecU vecV vecW] is

Let vec a = 2hati - hatj + 2hatk and vecb = hati + 2hatj - hatk . Let a vector vecv be in the plane containing veca and vec b. If vec v is perpendicular to the vector 3 hati + 2hatj - hatk and its projection on vec a is 19 units, then abs(2vec v)^2 is equal to _________.

Let vec a = 2hati - hatj + 2hatk and vecb = hati + 2hatj - hatk . Let a vector vecv be in the plane containing veca and vec b. If vec v is perpendicular to the vector 3 hati + 2hatj - hatk and its projection on vec a is 19 units, then abs(2vec v)^2 is equal to _________.

Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0 . Then find the greatest integer less than or equal to |vecR| .