Home
Class 12
MATHS
If |{:( a , a ^(2), 1+ a ^(3)), ( b , b...

If ` |{:( a , a ^(2), 1+ a ^(3)), ( b , b^(2), 1+ b ^(3)), ( c ,c ^(2), 1 + c ^(3)):}|=0 and `vectors ` (1, a,a ^(2)), (1, b, b ^(2)) and (1, c, c^(2))` are non-coplanar, then the value of abc +1 is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the determinant and the conditions given in the question step by step. ### Step 1: Write the Determinant We start with the determinant given in the problem: \[ D = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \\ \end{vmatrix} \] We also have the additional rows: \[ D' = \begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \\ \end{vmatrix} \] ### Step 2: Expand the Determinant Using properties of determinants, we can manipulate the determinant \(D'\): \[ D' = \begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \\ \end{vmatrix} \] We can express \(1 + a^3\) as \(1 + a^3 = (1 + a)(1 + a^2 - a)\) and similarly for \(b\) and \(c\). ### Step 3: Factor Out Common Terms We can factor out \(a\), \(b\), and \(c\) from the first column: \[ D' = abc \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \\ \end{vmatrix} \] ### Step 4: Determine the Value of the Determinant The determinant \(D\) is known to be non-zero since the vectors \((1, a, a^2)\), \((1, b, b^2)\), and \((1, c, c^2)\) are non-coplanar. Thus, we can conclude that: \[ D \neq 0 \] ### Step 5: Set Up the Equation Since we know that the determinant \(D'\) equals zero: \[ abc \cdot D = 0 \] Given that \(D \neq 0\), we must have: \[ abc = -1 \] ### Step 6: Find the Value of \(abc + 1\) Now we need to find the value of \(abc + 1\): \[ abc + 1 = -1 + 1 = 0 \] ### Final Answer Thus, the value of \(abc + 1\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 26|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1, a , a^2), B-=(1, b , b^2), C-=(1, c , c^2) are non-coplanar then the value of abc equal to

If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 and the vectors given by A(1, a, a^(2)), B(1, b, b^(2)), C(1, c, c^(2)) are non-collinear, then abc=

If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0 and the vectors overset(to)(A) =(1, a, a^(2)) , overset(to)(B) = (1, b, b^(2)) , overset(to)(C )(1,c,c^(2)) are non-coplanar then the product abc = ….

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If |((a_1 - a)^2,(a_1 - b)^2,(a_1 - c)^2),((b_1 - a)^2,(b_1 - b)^2,(b_1 - c)^2),((c_1 - a)^2,(c_1-b)^2,(c_1-c)^2)|=0 and if the vectors vec alpha = (1, a, a^2), vec beta = (1,b,b^2),vec gamma=(1,c,c^2) are non coplanar, show that the vectors vec alpha_1 =(1,a,a_1^2) ,vec beta_1=(1,b_1,b_1^2),vec gamma_1=(1,c_1,c_1^2) are coplanar.

If |[a,a^(2),1+a^(3)],[b,b^(2),1+b^(3)],[c,c^(2),1+c^(3)]|=0" and "|[a,a^(2),1],[b,b^(2),1],[c,c^(2),1]|!=0 then show that abc =-1

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.