Home
Class 12
MATHS
If |veca| =5, |vecb| =4, |vecc| =3 and v...

If `|veca| =5, |vecb| =4, |vecc| =3 and veca + vecb + vecc =0,` then the vlaue of `|veca, vecb + vecb.vecc+vecc,veca|,` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}|\) given that \(|\vec{a}| = 5\), \(|\vec{b}| = 4\), \(|\vec{c}| = 3\), and \(\vec{a} + \vec{b} + \vec{c} = 0\). ### Step 1: Understand the given information We have three vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that their sum is zero. This implies that \(\vec{c} = -(\vec{a} + \vec{b})\). ### Step 2: Use the dot product Taking the dot product of \(\vec{a} + \vec{b} + \vec{c} = 0\) with \(\vec{a}\): \[ \vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] This expands to: \[ \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \] Substituting \(|\vec{a}|^2\) for \(\vec{a} \cdot \vec{a}\): \[ |\vec{a}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \] This gives us: \[ 25 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \] Thus, \[ \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -25 \quad \text{(Equation 1)} \] ### Step 3: Take the dot product with \(\vec{b}\) Now, taking the dot product with \(\vec{b}\): \[ \vec{b} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] Expanding this gives: \[ \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{b} \cdot \vec{c} = 0 \] Substituting \(|\vec{b}|^2\): \[ \vec{b} \cdot \vec{a} + 16 + \vec{b} \cdot \vec{c} = 0 \] Thus, \[ \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} = -16 \quad \text{(Equation 2)} \] ### Step 4: Take the dot product with \(\vec{c}\) Now, taking the dot product with \(\vec{c}\): \[ \vec{c} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] Expanding this gives: \[ \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c} \cdot \vec{c} = 0 \] Substituting \(|\vec{c}|^2\): \[ \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + 9 = 0 \] Thus, \[ \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = -9 \quad \text{(Equation 3)} \] ### Step 5: Combine the equations Now we have three equations: 1. \(\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -25\) 2. \(\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} = -16\) 3. \(\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = -9\) Adding these three equations: \[ (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) + (\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{b}) = -25 - 16 - 9 \] This simplifies to: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -50 \] Thus, \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -25 \] ### Step 6: Find the magnitude The magnitude we need is: \[ |\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}| = |-25| = 25 \] ### Final Answer The value of \(|\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}|\) is **25**.
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 26|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. Vecb + vecb.vecc) is equal tio

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to