Home
Class 12
MATHS
Let vecu, vecv and vecw be such that |ve...

Let `vecu, vecv and vecw` be such that `|vecu|=1,|vecv|=2 and |vecw|=3` if the projection of `vecv " along "h vecu` is equal to that of `vecw` along `vecu` and vectors `vecv and vecw` are perpendicular to each other then `|vecu-vecv + vecw|` equals

Text Solution

Verified by Experts

The correct Answer is:
14
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 26|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 24|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3 . If the projection of vecv along vecu is equal to that of vecw along vecv,vecw are perpendicular to each other then |vecu-vecv+vecw| equals (A) 2 (B) sqrt(7) (C) sqrt(14) (D) 14

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw + vecw .vecu is

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw + vecw .vecu is

If vecu, vecv, vecw are three non-coplanar vectors, the (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw) equals

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(vecwxxvecu)=vecv then vecu.(vecvxxvecw) will be equal to