Home
Class 8
MATHS
Obtain the volume of rectangular boxes w...

Obtain the volume of rectangular boxes with the following length, breadth and height respectively. (i) `5a, 3a^2, 7a^4` (ii) `2p, 4q, 8r` (iii) `xy, 2x^2y, 2xy^2` (iv) `a, 2b, 3c`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of rectangular boxes given their dimensions, we use the formula for the volume of a rectangular box, which is: \[ V = \text{Length} \times \text{Breadth} \times \text{Height} \] Now, let's calculate the volume for each part step by step. ### (i) Length = \(5a\), Breadth = \(3a^2\), Height = \(7a^4\) 1. **Write the formula for volume**: \[ V = L \times B \times H \] \[ V = 5a \times 3a^2 \times 7a^4 \] 2. **Multiply the coefficients**: \[ 5 \times 3 \times 7 = 105 \] 3. **Multiply the variables**: \[ a \times a^2 \times a^4 = a^{1+2+4} = a^7 \] 4. **Combine the results**: \[ V = 105a^7 \] ### (ii) Length = \(2p\), Breadth = \(4q\), Height = \(8r\) 1. **Write the formula for volume**: \[ V = L \times B \times H \] \[ V = 2p \times 4q \times 8r \] 2. **Multiply the coefficients**: \[ 2 \times 4 \times 8 = 64 \] 3. **Combine the variables**: \[ V = 64pqr \] ### (iii) Length = \(xy\), Breadth = \(2x^2y\), Height = \(2xy^2\) 1. **Write the formula for volume**: \[ V = L \times B \times H \] \[ V = xy \times 2x^2y \times 2xy^2 \] 2. **Multiply the coefficients**: \[ 1 \times 2 \times 2 = 4 \] 3. **Multiply the variables**: \[ x^1 \times x^2 \times x^1 = x^{1+2+1} = x^4 \] \[ y^1 \times y^1 \times y^2 = y^{1+1+2} = y^4 \] 4. **Combine the results**: \[ V = 4x^4y^4 \] ### (iv) Length = \(a\), Breadth = \(2b\), Height = \(3c\) 1. **Write the formula for volume**: \[ V = L \times B \times H \] \[ V = a \times 2b \times 3c \] 2. **Multiply the coefficients**: \[ 1 \times 2 \times 3 = 6 \] 3. **Combine the variables**: \[ V = 6abc \] ### Final Answers: 1. \( V = 105a^7 \) 2. \( V = 64pqr \) 3. \( V = 4x^4y^4 \) 4. \( V = 6abc \)

To find the volume of rectangular boxes given their dimensions, we use the formula for the volume of a rectangular box, which is: \[ V = \text{Length} \times \text{Breadth} \times \text{Height} \] Now, let's calculate the volume for each part step by step. ### (i) Length = \(5a\), Breadth = \(3a^2\), Height = \(7a^4\) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise SOLVED EXAMPLES|13 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise EXERCISE 9.1|4 Videos
  • COMPARING QUANTITIES

    NCERT|Exercise EXERCISE 8.1|6 Videos

Similar Questions

Explore conceptually related problems

Volume of a rectangular box with length 2x, breadth 3y and height 4z is _________.

volume of a rectangular box (cuboid) with length =2ab, breadth =3ac and height =2ac is

Volume of a rectangular box (cuboid) with length = 2ab, breadth = 3ac and height = 2ac is

Find the volume of the rectangular boxes with following length, breadth and height: Length Breadth Height 2a x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3b y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5c z m^2n n^2p p^2m

Obtain the product of (i) xy, yz, zx (ii) a,-a^2, a^3 (iii) 2, 4y, 8y^2, 16y^3 (iv) a, 2b, 3c,6abc (v) m,-mn, mnp

Identify the like terms in the following: (i) a^(2), b^(2), - 2a^(2) , c^(2) , 4a (ii) 3x, 4xy, - yz, (1)/(2)zy (iii) -2xy^(2), x^(2) y, 5y^(2)x, x^(2) z (iv) 'abc, ab^(2)c, abc^(2), c^(2)ab, b^(2)ac, a^(2)bc, cab^(2)

Find each of the following products: (i) 5a^(2) b^(2) xx (3a^(2) - 4ab + 6b^(2)) (ii) (-3x^(2)y) xx (4x^(2) y - 3xy^(2) + 4x - 5y)

Add : 4x^(2)y, - 3xy^(2), -5xy^(2), 5x^(2)y

Use determinants to show that the following points are collinear. (i) A(2, 3), B(-1, -2) and C(5, 8) (ii) A(3, 8), B(-4, 2) and C(10, 14) (iii) P(-2, 5), Q(-6, -7) and R(-5, -4)

Write down the following in the product form: (i) x^(2)y ^(2) (ii) 6y^(5) (iii) 9xy^(2)z (iv) 10 a^(3) b^(3) c^(3)