Home
Class 12
MATHS
d/dx[sqrt((1+sinx)/(1-sinx))]...

`d/dx[sqrt((1+sinx)/(1-sinx))]`

Text Solution

Verified by Experts

The correct Answer is:
`secx(secx+tanx)`

`y=(sqrt(1+sinx))/(sqrt(1-sinx))xx(sqrt(1+sinx))/(sqrt(1+sinx))=((1+sinx))/(cosx)=(secx+tanx)`
`rArr(dy)/(dx)=(secxtanx+sec^(2)x)=secx(secx+tanx).`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10B|22 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10C|19 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10I|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log(sqrt((1+sinx)/(1-sinx)))]=

(d)/(dx)[tan^(-1)sqrt((1+sinx)/(1-sinx))]=

Differentiate the following w.r.t. x : tan^(-1)sqrt((1+sinx)/(1-sinx))

Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(ii)tan^(-1){sqrt((1+sinx)/(1-sinx))}

Differentiate w.r.t. x the function in cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))],0ltxltpi/2

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))}, -pi/2

(d)/(dx)[cot^(-1)sqrt((x)/(1-x))]=

(d)/(dx)log[sqrt((1-cos x)/(1+cos x))]=

(d)/(dx)[sqrt((sec x-1)/(sec x+1))]=

(d)/(dx)(sqrt(x)+(1)/(sqrt(x)))^(2) =