Home
Class 12
MATHS
Find (dy)/(dx), when : y=sin((1+x^(2))...

Find `(dy)/(dx)`, when :
`y=sin((1+x^(2))/(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sin\left(\frac{1 + x^2}{1 - x^2}\right)\), we will use the chain rule and the quotient rule for differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions Let: - \(u = \frac{1 + x^2}{1 - x^2}\) (inner function) - \(y = \sin(u)\) (outer function) ### Step 2: Differentiate the outer function Using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] We know that: \[ \frac{dy}{du} = \cos(u) \] ### Step 3: Differentiate the inner function \(u\) To differentiate \(u = \frac{1 + x^2}{1 - x^2}\), we will use the quotient rule: \[ \frac{du}{dx} = \frac{(1 - x^2)(2x) - (1 + x^2)(-2x)}{(1 - x^2)^2} \] ### Step 4: Simplify the expression for \(\frac{du}{dx}\) Calculating the numerator: \[ (1 - x^2)(2x) + (1 + x^2)(2x) = 2x(1 - x^2 + 1 + x^2) = 2x(2) = 4x \] Thus: \[ \frac{du}{dx} = \frac{4x}{(1 - x^2)^2} \] ### Step 5: Combine the results Now substituting back into the chain rule: \[ \frac{dy}{dx} = \cos\left(\frac{1 + x^2}{1 - x^2}\right) \cdot \frac{4x}{(1 - x^2)^2} \] ### Final Result Therefore, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{4x \cos\left(\frac{1 + x^2}{1 - x^2}\right)}{(1 - x^2)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10B|22 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10C|19 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10I|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find (dy)/(dx) , when y = cos((1-x^(2))/(1+x^(2)))

Find (dy)/(dx), when y=(sin x+x^(2))/(cot2x)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx), when: y=(1+x)(1+x^(2))(1+x^(4))(1+x^(6))

Find (dy)/(dx) , when: y=(x^(2)sqrt(1+x))/((1+x^(2))^(3//2))

Find (dy)/(dx) , when: y=x^(xcosx)+((x^(2)+1)/(x^(2)-1))

find (dy)/(dx), when y=tan^(-1)((2x)/(1-x^(2)))

Find (dy)/(dx) " when " y = sin^(-1) sqrt((1+x^(2))/2)