Home
Class 12
MATHS
Find (dy)/(dx), when : y=((sinx+x^(2))...

Find `(dy)/(dx)`, when :
`y=((sinx+x^(2)))/(cot 2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \frac{\sin x + x^2}{\cot 2x}\), we will use the quotient rule of differentiation. The quotient rule states that if you have a function \(y = \frac{u}{v}\), then the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = \sin x + x^2\) and \(v = \cot 2x\). ### Step 1: Identify \(u\) and \(v\) Let: - \(u = \sin x + x^2\) - \(v = \cot 2x\) ### Step 2: Differentiate \(u\) and \(v\) **Differentiate \(u\):** \[ \frac{du}{dx} = \frac{d}{dx}(\sin x) + \frac{d}{dx}(x^2) = \cos x + 2x \] **Differentiate \(v\):** Using the chain rule, we know that \(\frac{d}{dx}(\cot x) = -\csc^2 x\), so: \[ \frac{dv}{dx} = \frac{d}{dx}(\cot 2x) = -\csc^2(2x) \cdot \frac{d}{dx}(2x) = -2\csc^2(2x) \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\): \[ \frac{dy}{dx} = \frac{\cot 2x (\cos x + 2x) - (\sin x + x^2)(-2\csc^2(2x))}{\cot^2(2x)} \] ### Step 4: Simplify the Expression This can be simplified further: \[ \frac{dy}{dx} = \frac{\cot 2x (\cos x + 2x) + 2(\sin x + x^2)\csc^2(2x)}{\cot^2(2x)} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cot 2x (\cos x + 2x) + 2(\sin x + x^2)\csc^2(2x)}{\cot^2(2x)} \]

To find \(\frac{dy}{dx}\) for the function \(y = \frac{\sin x + x^2}{\cot 2x}\), we will use the quotient rule of differentiation. The quotient rule states that if you have a function \(y = \frac{u}{v}\), then the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = \sin x + x^2\) and \(v = \cot 2x\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10B|22 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10C|19 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10I|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx), when y=(sin x+x^(2))/(cot2x)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

Find (dy)/(dx) , when : If y=((cos x - sin x))/((cos x + sin x)) , prove that (dy)/(dx)+y^(2)+1=0 .