Home
Class 12
MATHS
Prove that (d)/(dx){2x tan^(-1)x-log (1+...

Prove that `(d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10B|22 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)=(-2x^(2)) =

(d)/(dx)[sec(2x^(2))]

(d)/(dx)(3x^(2)+2x)=

(d)/(dx) "" tan^(-1) ((2e^(x))/(1 - e^(2x)))=

d/(dx) (2x+5)^5

Find (d)/(dx)cot^(-1)((1-x^(2))/(2x))

(d)/(dx)[sin^(2)2x] =?

(d)/(dx)csc^(-1)((1+x^(2))/(2x))