Home
Class 12
MATHS
"If "y=a^(x^(a^(x...oo)))", prove that "...

`"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).`

Text Solution

AI Generated Solution

To solve the problem, we are given the equation \( y = a^{x^{a^{x^{\cdots}}}} \) and we need to prove that \[ \frac{dy}{dx} = \frac{y^2 \log y}{x(1 - y \log x \log y)}. \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10H|10 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10I|51 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

If y=x+(1)/(x+(1)/((1)/(x+...))), prove that(dy)/(dx)=(y)/(2y-x)

x(dy)/(dx)=y(logy-logx+1)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If y = x^(x ^(x^(x ^(x.... oo) then prove that x dy/dx = y^2/(1- y logx )