Home
Class 12
MATHS
Find the maximum and minimum values of f...

Find the maximum and minimum values of `f(x) = (-x + 2sin x) " on " [0, 2pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = -x + 2\sin x \) on the interval \([0, 2\pi]\), we will follow these steps: ### Step 1: Find the derivative of the function We first differentiate the function to find critical points. \[ f'(x) = \frac{d}{dx}(-x + 2\sin x) = -1 + 2\cos x \] ### Step 2: Set the derivative equal to zero To find the critical points, we set the derivative equal to zero: \[ -1 + 2\cos x = 0 \] Solving for \(\cos x\): \[ 2\cos x = 1 \implies \cos x = \frac{1}{2} \] ### Step 3: Find the values of \(x\) that satisfy \(\cos x = \frac{1}{2}\) The values of \(x\) in the interval \([0, 2\pi]\) where \(\cos x = \frac{1}{2}\) are: \[ x = \frac{\pi}{3}, \quad x = \frac{5\pi}{3} \] ### Step 4: Evaluate the function at critical points and endpoints Next, we evaluate \(f(x)\) at the critical points and at the endpoints of the interval \([0, 2\pi]\). 1. **At \(x = 0\)**: \[ f(0) = -0 + 2\sin(0) = 0 \] 2. **At \(x = \frac{\pi}{3}\)**: \[ f\left(\frac{\pi}{3}\right) = -\frac{\pi}{3} + 2\sin\left(\frac{\pi}{3}\right) = -\frac{\pi}{3} + 2 \cdot \frac{\sqrt{3}}{2} = -\frac{\pi}{3} + \sqrt{3} \] 3. **At \(x = \frac{5\pi}{3}\)**: \[ f\left(\frac{5\pi}{3}\right) = -\frac{5\pi}{3} + 2\sin\left(\frac{5\pi}{3}\right) = -\frac{5\pi}{3} + 2 \cdot \left(-\frac{\sqrt{3}}{2}\right) = -\frac{5\pi}{3} - \sqrt{3} \] 4. **At \(x = 2\pi\)**: \[ f(2\pi) = -2\pi + 2\sin(2\pi) = -2\pi + 0 = -2\pi \] ### Step 5: Compare the values Now we compare the values obtained: - \(f(0) = 0\) - \(f\left(\frac{\pi}{3}\right) = -\frac{\pi}{3} + \sqrt{3}\) - \(f\left(\frac{5\pi}{3}\right) = -\frac{5\pi}{3} - \sqrt{3}\) - \(f(2\pi) = -2\pi\) ### Step 6: Determine the maximum and minimum To find the maximum and minimum values, we need to evaluate the numerical values of \(f\left(\frac{\pi}{3}\right)\) and \(f\left(\frac{5\pi}{3}\right)\) and compare them with the others. - \(f(0) = 0\) - \(f\left(\frac{\pi}{3}\right) \approx -1.047 + 1.732 \approx 0.685\) - \(f\left(\frac{5\pi}{3}\right) \approx -5.236 - 1.732 \approx -6.968\) - \(f(2\pi) \approx -6.283\) ### Conclusion Thus, the maximum value of \(f(x)\) on the interval \([0, 2\pi]\) is: \[ \text{Maximum} = f\left(\frac{\pi}{3}\right) \approx 0.685 \] And the minimum value is: \[ \text{Minimum} = f\left(\frac{5\pi}{3}\right) \approx -6.968 \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11F|34 Videos
  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11G|32 Videos
  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11D|18 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,2 pi]

Find the maximum and minimum values of f(x)=sin x in the interval [pi,2 pi].

Find the maximum and minimum values of x+sin2x on [0,2 pi]

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

Find the minimum and maximum values of sin2x-cos2x

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Find the maximum and the minimum values of f(x)=sin(sin x) for all x in R, if any.

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

RS AGGARWAL-APPLICATIONS OF DERIVATIVES-Exercise 11E
  1. Find the maximum or minium values, if any, without using derivatives, ...

    Text Solution

    |

  2. Find the maximum or minium values, if any, without using derivatives, ...

    Text Solution

    |

  3. Find the maximum or minium values, if any, without using derivatives, ...

    Text Solution

    |

  4. Find the points of local maxima or local minima and the corresponding ...

    Text Solution

    |

  5. Find the points of local maxima or local minima and the corresponding ...

    Text Solution

    |

  6. Find all the points of local maxima and minima and the correspondin...

    Text Solution

    |

  7. Find the points of local maxima or minima and corresponding local m...

    Text Solution

    |

  8. Find the points of local maxima or local minima and corresponding loca...

    Text Solution

    |

  9. Find the points of local maxima or local minima and the corresponding ...

    Text Solution

    |

  10. Find the points of local maxima or local minima and the corresponding ...

    Text Solution

    |

  11. Find the points of local maxima or local minima and the corresponding ...

    Text Solution

    |

  12. Find the points of local maxima or local minima and the corresponding ...

    Text Solution

    |

  13. Find the maximum and minimum values of 2x^3-24x+107 on the interval [-...

    Text Solution

    |

  14. Find both the maximum and the minimum value of 3x^4-8x^3+12 x^2-48 ...

    Text Solution

    |

  15. Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ p...

    Text Solution

    |

  16. The maximum value of x^(1/x),x >0 is e^(1/e) (b) (1/e)^e (c) 1 (d) non...

    Text Solution

    |

  17. Show that the maximum value of f(x) = x+1/x is less than its minimum v...

    Text Solution

    |

  18. Find the maximum profit that a company can make, if the profit func...

    Text Solution

    |

  19. A jet of an enemy is flying along the curve y=x^2+2 . A soldier is ...

    Text Solution

    |

  20. Find the maximum and minimum values of f(x) = (-x + 2sin x) " on " [0,...

    Text Solution

    |