Home
Class 12
MATHS
If y = e^(1//x) " then " (dy)/(dx) = ?...

If `y = e^(1//x) " then " (dy)/(dx) =` ?

A

`(1)/(x).e^((1//x-1))`

B

`(-e^(1//x))/(x^(2))`

C

`e^(1//x) log x`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{\frac{1}{x}} \), we can use the chain rule for differentiation. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = e^{\frac{1}{x}} \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we will apply the chain rule. The derivative of \( e^u \) with respect to \( x \) is \( e^u \cdot \frac{du}{dx} \), where \( u = \frac{1}{x} \). ### Step 3: Differentiate \( u = \frac{1}{x} \) Now, we need to find \( \frac{du}{dx} \): \[ u = \frac{1}{x} \implies \frac{du}{dx} = -\frac{1}{x^2} \] ### Step 4: Apply the chain rule Using the chain rule: \[ \frac{dy}{dx} = e^{\frac{1}{x}} \cdot \frac{du}{dx} = e^{\frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right) \] ### Step 5: Simplify the expression Thus, we have: \[ \frac{dy}{dx} = -\frac{e^{\frac{1}{x}}}{x^2} \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{e^{\frac{1}{x}}}{x^2} \] ---

To find the derivative of the function \( y = e^{\frac{1}{x}} \), we can use the chain rule for differentiation. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = e^{\frac{1}{x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If x^y = e^(x-y) " then " dy/dx ?

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

"If "x^(y)=e^(x-y)" then "(dy)/(dx)=

If y=e^(log_(e)x)," then "(dy)/(dx)=

If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If x^(2) = e^(x-y) , then (dy)/(dx) at x = 1 is ……..

If y=e^(sin^(-1)x) then find (dy)/(dx)