Home
Class 12
MATHS
If y = (tan x)^(cot x) " then " (dy)/(dx...

If `y = (tan x)^(cot x) " then " (dy)/(dx)=` ?

A

`cot x.(tan x)^(cot x -1). Sec^(2) x`

B

`- (tan x)^(cot x). "cosec"^(2)c`

C

`(tanx)^(cot x)."cosec"^(2)x (1 - log tan x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = (\tan x)^{\cot x} \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \ln y = \ln((\tan x)^{\cot x}) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \( \ln(a^b) = b \ln a \), we can rewrite the equation: \[ \ln y = \cot x \cdot \ln(\tan x) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \). Remember to use the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\cot x \cdot \ln(\tan x)) \] Using the product rule: \[ \frac{d}{dx}(\cot x \cdot \ln(\tan x)) = \cot x \cdot \frac{d}{dx}(\ln(\tan x)) + \ln(\tan x) \cdot \frac{d}{dx}(\cot x) \] ### Step 4: Differentiate \( \ln(\tan x) \) and \( \cot x \) Now we need to find the derivatives: - The derivative of \( \ln(\tan x) \) is: \[ \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] - The derivative of \( \cot x \) is: \[ -\csc^2 x \] ### Step 5: Substitute the derivatives back into the equation Substituting these derivatives back into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = \cot x \cdot \frac{\sec^2 x}{\tan x} - \csc^2 x \cdot \ln(\tan x) \] ### Step 6: Simplify the expression We can simplify \( \cot x \cdot \frac{\sec^2 x}{\tan x} \): \[ \cot x = \frac{\cos x}{\sin x}, \quad \tan x = \frac{\sin x}{\cos x} \quad \Rightarrow \quad \frac{\sec^2 x}{\tan x} = \frac{1}{\sin x} \] Thus, \[ \cot x \cdot \frac{\sec^2 x}{\tan x} = \frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} = \frac{\cos x}{\sin^2 x} \] ### Step 7: Final expression for \( \frac{dy}{dx} \) Now we can write: \[ \frac{1}{y} \frac{dy}{dx} = \frac{\cos x}{\sin^2 x} - \csc^2 x \cdot \ln(\tan x) \] Multiplying both sides by \( y \): \[ \frac{dy}{dx} = y \left( \frac{\cos x}{\sin^2 x} - \csc^2 x \cdot \ln(\tan x) \right) \] Substituting back \( y = (\tan x)^{\cot x} \): \[ \frac{dy}{dx} = (\tan x)^{\cot x} \left( \frac{\cos x}{\sin^2 x} - \csc^2 x \cdot \ln(\tan x) \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\tan x)^{\cot x} \left( \frac{\cos x}{\sin^2 x} - \csc^2 x \cdot \ln(\tan x) \right) \]

To solve the problem \( y = (\tan x)^{\cot x} \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \ln y = \ln((\tan x)^{\cot x}) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y = (tan x)^(x) , then (dy)/(dx) =

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

If y=x^(x) +(tan x ) ^(x), then (dy)/(dx)=

If y =sqrt (tan sqrt x ), then (dy)/(dx) =

If y=(tan x + cot x)/(tan x - cot x) , then (dy)/(dx)=

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

If tan(x+y)=e^(x+y) , then (dy)/(dx)

If y = e^(x). cot x then (dy)/(dx) will be