Home
Class 12
MATHS
If y = (sin x)^(log x) " then " (dy)/(dx...

If `y = (sin x)^(log x) " then " (dy)/(dx) =`?

A

`(log x).(sinx)^((log x -1)).cos x`

B

`(sin x)^(log x).{(x log x + log sin x)/(x)}`

C

`(sin x)^(log x).{((x log x) cot x + log sin x)/(x)}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\sin x)^{\log x} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides: \[ \log y = \log((\sin x)^{\log x}) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \( \log(a^b) = b \log a \), we can rewrite the equation: \[ \log y = \log x \cdot \log(\sin x) \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \( x \). Using implicit differentiation on the left side and the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\log x \cdot \log(\sin x)) \] ### Step 4: Apply the product rule Using the product rule on the right side: \[ \frac{d}{dx}(\log x \cdot \log(\sin x)) = \log(\sin x) \cdot \frac{1}{x} + \log x \cdot \frac{d}{dx}(\log(\sin x)) \] ### Step 5: Differentiate \( \log(\sin x) \) To differentiate \( \log(\sin x) \), we use the chain rule: \[ \frac{d}{dx}(\log(\sin x)) = \frac{1}{\sin x} \cdot \cos x = \cot x \] Thus, we have: \[ \frac{d}{dx}(\log x \cdot \log(\sin x)) = \log(\sin x) \cdot \frac{1}{x} + \log x \cdot \cot x \] ### Step 6: Substitute back into the equation Now substituting back into our differentiated equation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{\log(\sin x)}{x} + \log x \cdot \cot x \] ### Step 7: Solve for \( \frac{dy}{dx} \) Multiplying both sides by \( y \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \frac{\log(\sin x)}{x} + \log x \cdot \cot x \right) \] ### Step 8: Substitute \( y \) back Since \( y = (\sin x)^{\log x} \), we can substitute back: \[ \frac{dy}{dx} = (\sin x)^{\log x} \left( \frac{\log(\sin x)}{x} + \log x \cdot \cot x \right) \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = (\sin x)^{\log x} \left( \frac{\log(\sin x)}{x} + \log x \cdot \cot x \right) \]

To find the derivative of the function \( y = (\sin x)^{\log x} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides: \[ \log y = \log((\sin x)^{\log x}) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y= ( log sin x) (logx ) ,then (dy)/(dx)

If y=sin(log x) then find (dy)/(dx)

If y=(log x)^(x) then (dy)/(dx) =

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

If y = x^(log x) , then (dy)/(dx) equals

If y =log (log x) then (dy)/(dx) =

If y =log x^(x) ,then (dy)/(dx) =