Home
Class 12
MATHS
If x^(p) y^(q) = (x + y)^((p + q)) " the...

If `x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)=` ?

A

`(x)/(y)`

B

`(y)/(x)`

C

`(x^(p-1))/(y^(q -1))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^p y^q = (x + y)^{p + q} \) for \(\frac{dy}{dx}\), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \log(x^p y^q) = \log((x + y)^{p + q}) \] ### Step 2: Apply logarithmic properties Using the properties of logarithms, we can simplify both sides: \[ p \log x + q \log y = (p + q) \log(x + y) \] ### Step 3: Differentiate both sides with respect to \(x\) Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(p \log x + q \log y) = \frac{d}{dx}((p + q) \log(x + y)) \] Using the chain rule, we get: \[ \frac{p}{x} + q \frac{1}{y} \frac{dy}{dx} = (p + q) \frac{1}{x + y} \left(1 + \frac{dy}{dx}\right) \] ### Step 4: Rearranging the equation Now, we will rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{p}{x} + q \frac{1}{y} \frac{dy}{dx} = \frac{(p + q)}{x + y} + \frac{(p + q)}{x + y} \frac{dy}{dx} \] ### Step 5: Collect terms involving \(\frac{dy}{dx}\) Rearranging gives: \[ q \frac{1}{y} \frac{dy}{dx} - \frac{(p + q)}{x + y} \frac{dy}{dx} = \frac{(p + q)}{x + y} - \frac{p}{x} \] Factoring out \(\frac{dy}{dx}\): \[ \left(q \frac{1}{y} - \frac{(p + q)}{x + y}\right) \frac{dy}{dx} = \frac{(p + q)}{x + y} - \frac{p}{x} \] ### Step 6: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{(p + q)}{x + y} - \frac{p}{x}}{q \frac{1}{y} - \frac{(p + q)}{x + y}} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = \frac{(p + q) \frac{1}{x + y} - \frac{p}{x}}{q \frac{1}{y} - \frac{(p + q)}{x + y}} \]

To solve the equation \( x^p y^q = (x + y)^{p + q} \) for \(\frac{dy}{dx}\), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \log(x^p y^q) = \log((x + y)^{p + q}) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

If x^py^q=(x+y)^(p+q) then the value of (d^(2)y)/(dx^(2)) is (where p,q in N ) (A) 0 (B) -1 (C) 1(D) None of these

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If x^py^q=(x+y)^(p+q) , then dy/dx= (a) x/y (b) y/x (c) x/(x+y) (d) y/(y+x)

If y = (1)/(1+x^( p-r) +x^(q-r)) +(1)/( 1+ x^(p-q) +x^(r-q) )+ (1) /( 1+x^(q-p) +x^(r-p)),then (dy)/(dx) =

Q.if y=x^(2)sin x, then (dy)/(dx) will be-

If x=a cos q,y=b sin q, then dy/dx=

If the integrating factor of the differential equation (dy)/(dx) +P (x) y = Q (x) is x , then P (x) is

RS AGGARWAL-APPLICATIONS OF DERIVATIVES-Objective Questions
  1. If sqrtx + sqrty = sqrta " then " (dy)/(dx) = ?

    Text Solution

    |

  2. If x^(y) = y^(x) " then " (dy)/(dx)= ?

    Text Solution

    |

  3. If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

    Text Solution

    |

  4. If y = x^(2) " sin " (1)/(x) " then " (dy)/(dx) = ?

    Text Solution

    |

  5. If y = cos^(2) x^(3) " then "(dy)/(dx) = ?

    Text Solution

    |

  6. If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

    Text Solution

    |

  7. If y = "log "((1 + sqrtx)/(1 - sqrtx)) " then " (dy)/(dx) = ?

    Text Solution

    |

  8. If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/...

    Text Solution

    |

  9. If y = sqrt((1 + sinx)/(1 - sin x)) " then " (dy)/(dx) = ?

    Text Solution

    |

  10. If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?

    Text Solution

    |

  11. If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

    Text Solution

    |

  12. If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

    Text Solution

    |

  13. If y = tan^(-1){(cos x + sinx)/(cos x - sin x)} " then " (dy)/(dx) = ...

    Text Solution

    |

  14. If y = tan^(-1){(cos x)/(1 + sinx)} " then " (dy)/(dx) = ?

    Text Solution

    |

  15. If y=tan^(- 1)sqrt((1-cosx)/(1+cosx)), prove that (dy)/(dx)=1/2.

    Text Solution

    |

  16. If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy...

    Text Solution

    |

  17. If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

    Text Solution

    |

  18. If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

    Text Solution

    |

  19. If y = tan^(-1) ((sqrta + sqrtx)/(1 - sqrt(ax))) " then " (dy)/(dx) = ...

    Text Solution

    |

  20. If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) =?

    Text Solution

    |