Home
Class 12
MATHS
If y = "log "((1 + sqrtx)/(1 - sqrtx)) "...

If `y = "log "((1 + sqrtx)/(1 - sqrtx)) " then " (dy)/(dx) =` ?

A

`(1)/(sqrtx (1-x))`

B

`(-1)/(x(1 - sqrtx)^(2))`

C

`(-sqrtx)/(2(1 - sqrtx))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \log\left(\frac{1 + \sqrt{x}}{1 - \sqrt{x}}\right)\), we can follow these steps: ### Step 1: Apply the Logarithmic Property Using the property of logarithms, we can rewrite the function: \[ y = \log(1 + \sqrt{x}) - \log(1 - \sqrt{x}) \] ### Step 2: Differentiate Each Term Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}[\log(1 + \sqrt{x})] - \frac{d}{dx}[\log(1 - \sqrt{x})] \] ### Step 3: Use the Chain Rule Using the chain rule for differentiation, we find the derivatives: \[ \frac{d}{dx}[\log(1 + \sqrt{x})] = \frac{1}{1 + \sqrt{x}} \cdot \frac{d}{dx}(1 + \sqrt{x}) = \frac{1}{1 + \sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \] \[ \frac{d}{dx}[\log(1 - \sqrt{x})] = \frac{1}{1 - \sqrt{x}} \cdot \frac{d}{dx}(1 - \sqrt{x}) = \frac{1}{1 - \sqrt{x}} \cdot \left(-\frac{1}{2\sqrt{x}}\right) \] ### Step 4: Substitute Back into the Derivative Substituting these back into the derivative: \[ \frac{dy}{dx} = \frac{1}{(1 + \sqrt{x}) \cdot 2\sqrt{x}} - \left(-\frac{1}{(1 - \sqrt{x}) \cdot 2\sqrt{x}}\right) \] \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}(1 + \sqrt{x})} + \frac{1}{2\sqrt{x}(1 - \sqrt{x})} \] ### Step 5: Combine the Fractions Now, we combine the fractions: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \left(\frac{1}{1 + \sqrt{x}} + \frac{1}{1 - \sqrt{x}}\right) \] Finding a common denominator for the fractions inside the parentheses: \[ \frac{1}{1 + \sqrt{x}} + \frac{1}{1 - \sqrt{x}} = \frac{(1 - \sqrt{x}) + (1 + \sqrt{x})}{(1 + \sqrt{x})(1 - \sqrt{x})} = \frac{2}{1 - x} \] ### Step 6: Final Simplification Substituting this back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \cdot \frac{2}{1 - x} = \frac{1}{\sqrt{x}(1 - x)} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x}(1 - x)} \] ---

To find \(\frac{dy}{dx}\) for the function \(y = \log\left(\frac{1 + \sqrt{x}}{1 - \sqrt{x}}\right)\), we can follow these steps: ### Step 1: Apply the Logarithmic Property Using the property of logarithms, we can rewrite the function: \[ y = \log(1 + \sqrt{x}) - \log(1 - \sqrt{x}) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y = x^(sqrtx) " then " (dy)/(dx) = ?

If sqrtx + sqrty = sqrta " then " (dy)/(dx) = ?

If y = tan^(-1) ((sqrta + sqrtx)/(1 - sqrt(ax))) " then " (dy)/(dx) = ?

y = sqrtx + 1/sqrtx

If y= cos sqrtx ,then (dy)/(dx) =

If y = e^(sin sqrtx) " then " (dy)/(dx) = ?

If y =sqrt sin sqrtx ,then (dy)/(dx) =

y = x+sqrtx+1/sqrtx

If y=x^sqrt(x)+(sqrtx)^x then find (dy)/(dx)

If y=sqrt(e^(sqrtx)) , find (dy)/(dx) .

RS AGGARWAL-APPLICATIONS OF DERIVATIVES-Objective Questions
  1. If y = cos^(2) x^(3) " then "(dy)/(dx) = ?

    Text Solution

    |

  2. If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

    Text Solution

    |

  3. If y = "log "((1 + sqrtx)/(1 - sqrtx)) " then " (dy)/(dx) = ?

    Text Solution

    |

  4. If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/...

    Text Solution

    |

  5. If y = sqrt((1 + sinx)/(1 - sin x)) " then " (dy)/(dx) = ?

    Text Solution

    |

  6. If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?

    Text Solution

    |

  7. If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

    Text Solution

    |

  8. If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

    Text Solution

    |

  9. If y = tan^(-1){(cos x + sinx)/(cos x - sin x)} " then " (dy)/(dx) = ...

    Text Solution

    |

  10. If y = tan^(-1){(cos x)/(1 + sinx)} " then " (dy)/(dx) = ?

    Text Solution

    |

  11. If y=tan^(- 1)sqrt((1-cosx)/(1+cosx)), prove that (dy)/(dx)=1/2.

    Text Solution

    |

  12. If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy...

    Text Solution

    |

  13. If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

    Text Solution

    |

  14. If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

    Text Solution

    |

  15. If y = tan^(-1) ((sqrta + sqrtx)/(1 - sqrt(ax))) " then " (dy)/(dx) = ...

    Text Solution

    |

  16. If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) =?

    Text Solution

    |

  17. If y = tan^(-1) ((1 + x^(2))/(1 - x^(2))) " then " (dy)/(dx) = ?

    Text Solution

    |

  18. If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

    Text Solution

    |

  19. If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

    Text Solution

    |

  20. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |