Home
Class 12
MATHS
If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(...

If `y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) =` ?

A

`(2)/(sqrt(1 + x^(2)))`

B

`(2 sqrt(1 + x^(2)))/(x^(2))`

C

`(-2)/(sqrt(1 +x^(2)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the given function \( y = \log \left( \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2} - x} \right) \), we will follow these steps: ### Step 1: Use the property of logarithms We can simplify the logarithm using the property \( \log \left( \frac{A}{B} \right) = \log A - \log B \). \[ y = \log \left( \sqrt{1 + x^2} + x \right) - \log \left( \sqrt{1 + x^2} - x \right) \] ### Step 2: Differentiate both sides Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \log \left( \sqrt{1 + x^2} + x \right) \right) - \frac{d}{dx} \left( \log \left( \sqrt{1 + x^2} - x \right) \right) \] Using the derivative of \( \log u \) which is \( \frac{1}{u} \frac{du}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2} + x} \cdot \frac{d}{dx} \left( \sqrt{1 + x^2} + x \right) - \frac{1}{\sqrt{1 + x^2} - x} \cdot \frac{d}{dx} \left( \sqrt{1 + x^2} - x \right) \] ### Step 3: Differentiate the inner functions Now we need to differentiate \( \sqrt{1 + x^2} + x \) and \( \sqrt{1 + x^2} - x \): 1. For \( \sqrt{1 + x^2} + x \): \[ \frac{d}{dx} \left( \sqrt{1 + x^2} + x \right) = \frac{1}{2\sqrt{1 + x^2}} \cdot 2x + 1 = \frac{x}{\sqrt{1 + x^2}} + 1 \] 2. For \( \sqrt{1 + x^2} - x \): \[ \frac{d}{dx} \left( \sqrt{1 + x^2} - x \right) = \frac{1}{2\sqrt{1 + x^2}} \cdot 2x - 1 = \frac{x}{\sqrt{1 + x^2}} - 1 \] ### Step 4: Substitute back into the derivative Now substituting these derivatives back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2} + x} \left( \frac{x}{\sqrt{1 + x^2}} + 1 \right) - \frac{1}{\sqrt{1 + x^2} - x} \left( \frac{x}{\sqrt{1 + x^2}} - 1 \right) \] ### Step 5: Simplify the expression Now we simplify the expression: \[ \frac{dy}{dx} = \frac{\frac{x}{\sqrt{1 + x^2}} + 1}{\sqrt{1 + x^2} + x} - \frac{\frac{x}{\sqrt{1 + x^2}} - 1}{\sqrt{1 + x^2} - x} \] ### Step 6: Combine the fractions To combine the two fractions, we will find a common denominator: \[ \frac{dy}{dx} = \frac{(\frac{x}{\sqrt{1 + x^2}} + 1)(\sqrt{1 + x^2} - x) - (\frac{x}{\sqrt{1 + x^2}} - 1)(\sqrt{1 + x^2} + x)}{(\sqrt{1 + x^2} + x)(\sqrt{1 + x^2} - x)} \] ### Step 7: Final simplification After simplifying the numerator and denominator, we will arrive at the final expression for \( \frac{dy}{dx} \). Finally, the result is: \[ \frac{dy}{dx} = \frac{2}{\sqrt{1 + x^2}} \]

To find the derivative of the given function \( y = \log \left( \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2} - x} \right) \), we will follow these steps: ### Step 1: Use the property of logarithms We can simplify the logarithm using the property \( \log \left( \frac{A}{B} \right) = \log A - \log B \). \[ y = \log \left( \sqrt{1 + x^2} + x \right) - \log \left( \sqrt{1 + x^2} - x \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=

If y= log (sqrt(x - 1)) - sqrt(x + 1)) , "then " (dy)/(dx) is equal to

y=log[(x+sqrt(x^(2)+25))/(sqrt(x^(2)+25)-x)], find (dy)/(dx)

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=

RS AGGARWAL-APPLICATIONS OF DERIVATIVES-Objective Questions
  1. If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

    Text Solution

    |

  2. If y = "log "((1 + sqrtx)/(1 - sqrtx)) " then " (dy)/(dx) = ?

    Text Solution

    |

  3. If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/...

    Text Solution

    |

  4. If y = sqrt((1 + sinx)/(1 - sin x)) " then " (dy)/(dx) = ?

    Text Solution

    |

  5. If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?

    Text Solution

    |

  6. If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

    Text Solution

    |

  7. If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

    Text Solution

    |

  8. If y = tan^(-1){(cos x + sinx)/(cos x - sin x)} " then " (dy)/(dx) = ...

    Text Solution

    |

  9. If y = tan^(-1){(cos x)/(1 + sinx)} " then " (dy)/(dx) = ?

    Text Solution

    |

  10. If y=tan^(- 1)sqrt((1-cosx)/(1+cosx)), prove that (dy)/(dx)=1/2.

    Text Solution

    |

  11. If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy...

    Text Solution

    |

  12. If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

    Text Solution

    |

  13. If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

    Text Solution

    |

  14. If y = tan^(-1) ((sqrta + sqrtx)/(1 - sqrt(ax))) " then " (dy)/(dx) = ...

    Text Solution

    |

  15. If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) =?

    Text Solution

    |

  16. If y = tan^(-1) ((1 + x^(2))/(1 - x^(2))) " then " (dy)/(dx) = ?

    Text Solution

    |

  17. If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

    Text Solution

    |

  18. If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

    Text Solution

    |

  19. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  20. If y = cot^(-1) ((1 -x)/(1 +x)) " then " (dy)/(dx) = ?

    Text Solution

    |