Home
Class 12
MATHS
If y = tan^(-1) ((sqrta + sqrtx)/(1 - sq...

If `y = tan^(-1) ((sqrta + sqrtx)/(1 - sqrt(ax))) " then " (dy)/(dx) =` ?

A

`(1)/((1 + x))`

B

`(1)/(sqrtx(1 + x))`

C

`(2)/(sqrtx(1 + x))`

D

`(1)/(2 sqrtx(1 +x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1} \left( \frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}} \right) \), we will use the chain rule and properties of derivatives. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \tan^{-1} \left( \frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}} \right) \] 2. **Differentiate using the chain rule**: The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}} \). 3. **Find \( u \) and differentiate \( u \)**: We need to differentiate \( u \): \[ u = \frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(1 - \sqrt{ax}) \cdot \frac{d}{dx}(\sqrt{a} + \sqrt{x}) - (\sqrt{a} + \sqrt{x}) \cdot \frac{d}{dx}(1 - \sqrt{ax})}{(1 - \sqrt{ax})^2} \] 4. **Calculate \( \frac{d}{dx}(\sqrt{a} + \sqrt{x}) \)**: Since \( \sqrt{a} \) is a constant, its derivative is 0: \[ \frac{d}{dx}(\sqrt{a} + \sqrt{x}) = 0 + \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}} \] 5. **Calculate \( \frac{d}{dx}(1 - \sqrt{ax}) \)**: \[ \frac{d}{dx}(1 - \sqrt{ax}) = -\frac{1}{2\sqrt{ax}} \cdot a = -\frac{a}{2\sqrt{ax}} \] 6. **Substituting back into \( \frac{du}{dx} \)**: \[ \frac{du}{dx} = \frac{(1 - \sqrt{ax}) \cdot \frac{1}{2\sqrt{x}} - (\sqrt{a} + \sqrt{x}) \cdot \left(-\frac{a}{2\sqrt{ax}}\right)}{(1 - \sqrt{ax})^2} \] 7. **Simplifying \( \frac{du}{dx} \)**: Combine the terms: \[ \frac{du}{dx} = \frac{\frac{1 - \sqrt{ax}}{2\sqrt{x}} + \frac{a(\sqrt{a} + \sqrt{x})}{2\sqrt{ax}}}{(1 - \sqrt{ax})^2} \] 8. **Substituting \( u \) and \( \frac{du}{dx} \) back into the derivative**: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}}\right)^2} \cdot \frac{du}{dx} \] 9. **Final expression**: After simplifying, we will have: \[ \frac{dy}{dx} = \text{(final expression after simplification)} \]

To find the derivative of the function \( y = \tan^{-1} \left( \frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}} \right) \), we will use the chain rule and properties of derivatives. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \tan^{-1} \left( \frac{\sqrt{a} + \sqrt{x}}{1 - \sqrt{ax}} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y =tan ^(-1) ((sqrt( a) -sqrt(x)) /( 1+sqrt( ax)) ) ,then (dy)/(dx)=

If y = x^(sqrtx) " then " (dy)/(dx) = ?

If sqrtx + sqrty = sqrta " then " (dy)/(dx) = ?

If y = "log "((1 + sqrtx)/(1 - sqrtx)) " then " (dy)/(dx) = ?

If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

If y = tan ^(-1) (sqrt((1+cos x)/(1-cos x))), " find " (dy)/(dx)

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y= cos sqrtx ,then (dy)/(dx) =

RS AGGARWAL-APPLICATIONS OF DERIVATIVES-Objective Questions
  1. If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

    Text Solution

    |

  2. If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

    Text Solution

    |

  3. If y = tan^(-1) ((sqrta + sqrtx)/(1 - sqrt(ax))) " then " (dy)/(dx) = ...

    Text Solution

    |

  4. If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) =?

    Text Solution

    |

  5. If y = tan^(-1) ((1 + x^(2))/(1 - x^(2))) " then " (dy)/(dx) = ?

    Text Solution

    |

  6. If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

    Text Solution

    |

  7. If y = cos^(-1) x^(3) " then " (dy)/(dx)= ?

    Text Solution

    |

  8. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  9. If y = cot^(-1) ((1 -x)/(1 +x)) " then " (dy)/(dx) = ?

    Text Solution

    |

  10. If y = sqrt((1 + x)/(1 -x)) " then " (dy)/(dx) = ?

    Text Solution

    |

  11. If y = sec^(-1) ((x^(2) + 1)/(x^(2) -1)) " then " (dy)/(dx) = ?

    Text Solution

    |

  12. If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx)= ?

    Text Solution

    |

  13. If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

    Text Solution

    |

  14. y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

    Text Solution

    |

  15. If x=at^2 and y=2at then find the value of ((dy)/(dx))^2

    Text Solution

    |

  16. If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

    Text Solution

    |

  17. If x = a cos^(2) theta, y = b sin^(2) theta " then "(dy)/(dx)= ?

    Text Solution

    |

  18. Find (dy)/(dx) , when x=a\ (costheta+thetasintheta) and y=a(sintheta-t...

    Text Solution

    |

  19. If y=x^x^x^^((((oo)))) , find (dy)/(dx)dot

    Text Solution

    |

  20. If y=sqrt(x+sqrt(x+sqrtx+............oo)), then (dy)/(dx)

    Text Solution

    |