Home
Class 12
MATHS
If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x...

If `y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)=` ?

A

`(1)/((1 + x^(2)))`

B

`(2)/((1 + x^(2)))`

C

`(1)/(2 (1 +x^(2)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) \) and find \( \frac{dy}{dx} \), we will use a substitution method to simplify the expression before differentiating. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \tan(\theta) \). Then, we know that: \[ \sqrt{1 + x^2} = \sqrt{1 + \tan^2(\theta)} = \sec(\theta) \] Therefore, we can rewrite \( y \) as: \[ y = \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) \] 2. **Simplifying the Expression**: We can rewrite the expression inside the arctangent: \[ y = \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) = \tan^{-1} \left( \frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}} \right) \] Simplifying further: \[ = \tan^{-1} \left( \frac{1 - \cos(\theta)}{\sin(\theta)} \right) \] 3. **Using Trigonometric Identities**: We can use the identity \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \) to rewrite the expression: \[ y = \tan^{-1} \left( \frac{2\sin^2\left(\frac{\theta}{2}\right)}{\sin(\theta)} \right) \] Since \( \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \), we have: \[ y = \tan^{-1} \left( \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} \right) = \tan^{-1} \left( \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} \right) \] Thus, we can simplify: \[ y = \frac{\theta}{2} \] 4. **Finding \( \frac{dy}{dx} \)**: Now, since \( x = \tan(\theta) \), we have: \[ \frac{dx}{d\theta} = \sec^2(\theta) \] Therefore, using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} \] We know \( \frac{dy}{d\theta} = \frac{1}{2} \), and \( \frac{d\theta}{dx} = \frac{1}{\sec^2(\theta)} = \cos^2(\theta) \). 5. **Final Expression**: Thus, we get: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \cos^2(\theta) \] Since \( \cos(\theta) = \frac{1}{\sqrt{1 + x^2}} \), we have: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \left(\frac{1}{\sqrt{1 + x^2}}\right)^2 = \frac{1}{2(1 + x^2)} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{1}{2(1 + x^2)} \]

To solve the problem \( y = \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) \) and find \( \frac{dy}{dx} \), we will use a substitution method to simplify the expression before differentiating. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \tan(\theta) \). Then, we know that: \[ \sqrt{1 + x^2} = \sqrt{1 + \tan^2(\theta)} = \sec(\theta) ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y=tan^(-1)sqrt(x^(2)+1)+cot^(-1)sqrt(x^(2)+1)" then "(dy)/(dx)=

if y=tan^(-1)((x)/(sqrt(1+x^(2)))) then find (dy)/(dx)

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y = tan ^(-1) (sqrt((1+cos x)/(1-cos x))), " find " (dy)/(dx)

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

RS AGGARWAL-APPLICATIONS OF DERIVATIVES-Objective Questions
  1. If y = sec^(-1) ((x^(2) + 1)/(x^(2) -1)) " then " (dy)/(dx) = ?

    Text Solution

    |

  2. If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx)= ?

    Text Solution

    |

  3. If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

    Text Solution

    |

  4. y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

    Text Solution

    |

  5. If x=at^2 and y=2at then find the value of ((dy)/(dx))^2

    Text Solution

    |

  6. If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

    Text Solution

    |

  7. If x = a cos^(2) theta, y = b sin^(2) theta " then "(dy)/(dx)= ?

    Text Solution

    |

  8. Find (dy)/(dx) , when x=a\ (costheta+thetasintheta) and y=a(sintheta-t...

    Text Solution

    |

  9. If y=x^x^x^^((((oo)))) , find (dy)/(dx)dot

    Text Solution

    |

  10. If y=sqrt(x+sqrt(x+sqrtx+............oo)), then (dy)/(dx)

    Text Solution

    |

  11. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+\ dotto\ oo))) , prove that (dy)/(d...

    Text Solution

    |

  12. If y = e^(x) + e^(x + ...oo) " then " (dy)/(dx)= ?

    Text Solution

    |

  13. The value of k for which f(x) = {((sin 5x)/(3x)","," if " x !=0),(" ...

    Text Solution

    |

  14. Let f(x) = {(x "sin "(1)/(x)","," if " x != 0),(" 0,"," where ...

    Text Solution

    |

  15. The value of k for which f(x) = {((3x + 4 tan x)/(x)","," where " x !...

    Text Solution

    |

  16. Let f(x) = x^(.^(3)//(2)). Then, f'(0) = ?

    Text Solution

    |

  17. The function f(x) = |x| AA x in R is

    Text Solution

    |

  18. The function f(x) = {(1 + x", when " x le 2),(5 -x ", when " x gt 2):}...

    Text Solution

    |

  19. If the function f(x) = {(kx + 5 ", when " x le 2),(x -1 ", when " x gt...

    Text Solution

    |

  20. If the function f(x) {((1 - cos 4x)/(8x^(2))",",x !=0),(" k,",x...

    Text Solution

    |