Home
Class 12
MATHS
y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))...

`y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) =` ?

A

`(-1)/(2 sqrt(1 -x^(2)))`

B

`(1)/(2 sqrt(1 -x^(2)))`

C

`(1)/(2(1 +x^(2)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1} \left( \frac{\sqrt{1+x} + \sqrt{1-x}}{2} \right) \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \cos(2\theta) \) We know that: \[ 1 + x = 1 + \cos(2\theta) = 2\cos^2(\theta) \] \[ 1 - x = 1 - \cos(2\theta) = 2\sin^2(\theta) \] Thus, we can rewrite the expression inside the inverse sine: \[ \sqrt{1+x} = \sqrt{2\cos^2(\theta)} = \sqrt{2} \cos(\theta) \] \[ \sqrt{1-x} = \sqrt{2\sin^2(\theta)} = \sqrt{2} \sin(\theta) \] So, we have: \[ y = \sin^{-1} \left( \frac{\sqrt{2} \cos(\theta) + \sqrt{2} \sin(\theta)}{2} \right) \] This simplifies to: \[ y = \sin^{-1} \left( \frac{\sqrt{2}}{2} (\cos(\theta) + \sin(\theta)) \right) \] ### Step 2: Simplify the expression Using the identity \( \cos(\theta) + \sin(\theta) = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \): \[ y = \sin^{-1} \left( \frac{\sqrt{2}}{2} \cdot \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \right) \] This simplifies to: \[ y = \sin^{-1} \left( \sin\left(\theta + \frac{\pi}{4}\right) \right) \] Thus, we have: \[ y = \theta + \frac{\pi}{4} \] ### Step 3: Relate \( \theta \) back to \( x \) Since \( x = \cos(2\theta) \), we have: \[ \theta = \frac{1}{2} \cos^{-1}(x) \] Substituting back, we get: \[ y = \frac{1}{2} \cos^{-1}(x) + \frac{\pi}{4} \] ### Step 4: Differentiate \( y \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx} \left( \cos^{-1}(x) \right) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx} \left( \cos^{-1}(x) \right) = -\frac{1}{\sqrt{1-x^2}} \] Thus: \[ \frac{dy}{dx} = \frac{1}{2} \left( -\frac{1}{\sqrt{1-x^2}} \right) = -\frac{1}{2\sqrt{1-x^2}} \] ### Final Answer \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{1-x^2}} \] ---

To differentiate the function \( y = \sin^{-1} \left( \frac{\sqrt{1+x} + \sqrt{1-x}}{2} \right) \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \cos(2\theta) \) We know that: \[ 1 + x = 1 + \cos(2\theta) = 2\cos^2(\theta) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    RS AGGARWAL|Exercise Exercise 11H|30 Videos
  • ADJOINT AND INVERSE OF A MATRIX

    RS AGGARWAL|Exercise Exercise 7|37 Videos
  • AREA OF BOUNDED REGIONS

    RS AGGARWAL|Exercise Exercise 17|39 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1){(sqrt(1+x)-sqrt(1-x))/(2)} , find (dy)/(dx).

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If y = sqrt((1 + sinx)/(1 - sin x)) " then " (dy)/(dx) = ?

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

RS AGGARWAL-APPLICATIONS OF DERIVATIVES-Objective Questions
  1. If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx)= ?

    Text Solution

    |

  2. If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

    Text Solution

    |

  3. y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

    Text Solution

    |

  4. If x=at^2 and y=2at then find the value of ((dy)/(dx))^2

    Text Solution

    |

  5. If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

    Text Solution

    |

  6. If x = a cos^(2) theta, y = b sin^(2) theta " then "(dy)/(dx)= ?

    Text Solution

    |

  7. Find (dy)/(dx) , when x=a\ (costheta+thetasintheta) and y=a(sintheta-t...

    Text Solution

    |

  8. If y=x^x^x^^((((oo)))) , find (dy)/(dx)dot

    Text Solution

    |

  9. If y=sqrt(x+sqrt(x+sqrtx+............oo)), then (dy)/(dx)

    Text Solution

    |

  10. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+\ dotto\ oo))) , prove that (dy)/(d...

    Text Solution

    |

  11. If y = e^(x) + e^(x + ...oo) " then " (dy)/(dx)= ?

    Text Solution

    |

  12. The value of k for which f(x) = {((sin 5x)/(3x)","," if " x !=0),(" ...

    Text Solution

    |

  13. Let f(x) = {(x "sin "(1)/(x)","," if " x != 0),(" 0,"," where ...

    Text Solution

    |

  14. The value of k for which f(x) = {((3x + 4 tan x)/(x)","," where " x !...

    Text Solution

    |

  15. Let f(x) = x^(.^(3)//(2)). Then, f'(0) = ?

    Text Solution

    |

  16. The function f(x) = |x| AA x in R is

    Text Solution

    |

  17. The function f(x) = {(1 + x", when " x le 2),(5 -x ", when " x gt 2):}...

    Text Solution

    |

  18. If the function f(x) = {(kx + 5 ", when " x le 2),(x -1 ", when " x gt...

    Text Solution

    |

  19. If the function f(x) {((1 - cos 4x)/(8x^(2))",",x !=0),(" k,",x...

    Text Solution

    |

  20. If the function f(x) = {((sin^(2)ax)/(x^(2))","," when "x != 0),(" ...

    Text Solution

    |