Home
Class 12
MATHS
int3^(x) dx = ?...

`int3^(x) dx = ?`

A

`3^(x) (log3) + C`

B

`3^(x) + C`

C

`(3^(x))/(log 3) + C`

D

`(log3)/(3^(x)) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int 3^x \, dx \), we can follow these steps: ### Step 1: Identify the integral form We recognize that the integral of an exponential function \( a^x \) can be expressed in a standard form. The formula for integrating \( a^x \) is: \[ \int a^x \, dx = \frac{a^x}{\ln(a)} + C \] where \( C \) is the constant of integration. ### Step 2: Apply the formula In our case, \( a = 3 \). Therefore, we can apply the formula: \[ \int 3^x \, dx = \frac{3^x}{\ln(3)} + C \] ### Step 3: Write the final answer Thus, the integral \( \int 3^x \, dx \) evaluates to: \[ \int 3^x \, dx = \frac{3^x}{\ln(3)} + C \] ### Summary of the solution: \[ \int 3^x \, dx = \frac{3^x}{\ln(3)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

inte^(x+3) dx

int a^(3x)dx

int e^(3x)dx

int x^(3)dx

inte^(4-3x) dx

int 3sqrt(x) dx = ?

int 2^(x+3) dx

int3^((5-3x))dx=?

int x/(3x) dx