Home
Class 12
MATHS
int ((1-cos2x))/((1+cos 2x)) dx = ?...

`int ((1-cos2x))/((1+cos 2x)) dx = ?`

A

`tanx + x + C`

B

`tanx - x + C`

C

`-tan x + x + C`

D

`- tanx- x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1 - \cos 2x}{1 + \cos 2x} \, dx\), we can follow these steps: ### Step 1: Rewrite the integrand We know that \(\cos 2x = 2\cos^2 x - 1\). Thus, we can express \(1 + \cos 2x\) as: \[ 1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x \] And \(1 - \cos 2x\) can be expressed as: \[ 1 - \cos 2x = 1 - (2\cos^2 x - 1) = 2 - 2\cos^2 x = 2(1 - \cos^2 x) = 2\sin^2 x \] ### Step 2: Substitute into the integral Now substituting these into the integral, we have: \[ \int \frac{1 - \cos 2x}{1 + \cos 2x} \, dx = \int \frac{2\sin^2 x}{2\cos^2 x} \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \tan^2 x \, dx \] ### Step 3: Use the identity for \(\tan^2 x\) We know that: \[ \tan^2 x = \sec^2 x - 1 \] Thus, we can rewrite the integral as: \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx \] ### Step 4: Integrate Now we can integrate: \[ \int \tan^2 x \, dx = \int \sec^2 x \, dx - \int 1 \, dx = \tan x - x + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 - \cos 2x}{1 + \cos 2x} \, dx = \tan x - x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(1+cos 2x)/(1-cos 2x)dx

int(1+cos^(2)(x))/(1+cos(2x))dx

Knowledge Check

  • int (cos 2x - 1)/(cos 2x + 1) dx =

    A
    `tan x - x`
    B
    `x + tan x`
    C
    `x - tan x`
    D
    `-x - cot x`
  • Similar Questions

    Explore conceptually related problems

    int(1-cos x)/(cos x(1+cos x))dx

    Evaluate : (i) int((4-5 cosx)/(sin^(2)x))dx , (ii) int((1-cos2x)/(1+cos2x)) dx (iii) int (1)/(sin^(2)x cos^(2)x) dx , (iv) int(cos2x)/(cos^(2)x sin^(2) x) dx

    int (1-cos 2x)/2 dx

    Evaluate the following integrals: (i) int((1-cos2x)/(1+cos2x))dx (ii) int((1+cos2x)/(1-cos2x))dx

    int(1-cos(x+2))/(1+cos(x+2))dx

    Evaluate: (i) int sqrt((1-cos2x)/(1+cos2x))dx (ii) int sqrt((1+cos x)/(1-cos x))dx

    Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx